
Vol.: (0123456789)
1 3

Agroforest Syst (2023) 97:1481–1489 
https://doi.org/10.1007/s10457-023-00871-x

Highlighting the potential of multilevel statistical models 
for analysis of individual agroforestry systems

Karolina Golicz · Hans‑Peter Piepho · Eva‑Maria L. Minarsch · 
Wiebke Niether · André Große‑Stoltenberg · Jens Oldeland · Lutz Breuer · 
Andreas Gattinger · Suzanne Jacobs

Received: 8 March 2023 / Accepted: 22 June 2023 / Published online: 9 July 2023 
© The Author(s) 2023

Abstract Agroforestry is a land-use system that 
combines arable and/or livestock management with 
tree cultivation, which has been shown to provide a 
wide range of socio-economic and ecological ben-
efits. It is considered a promising strategy for enhanc-
ing resilience of agricultural systems that must remain 
productive despite increasing environmental and soci-
etal pressures. However, agroforestry systems pose a 
number of challenges for experimental research and 
scientific hypothesis testing because of their inher-
ent spatiotemporal complexity. We reviewed current 
approaches to data analysis and sampling strategies 
of bio-physico-chemical indicators, including crop 
yield, in European temperate agroforestry systems 

to examine the existing statistical methods used in 
agroforestry experiments. We found multilevel mod-
els, which are commonly employed in ecology, to be 
underused and under-described in agroforestry sys-
tem analysis. This Short Communication together 
with a companion R script are designed to act as an 
introduction to multilevel models and to promote 
their use in agroforestry research.

Keywords Alley cropping · Research methods · 
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Challenges in the experimental design 
of agroforestry research sites

Temperate agroforestry comprises silvoarable and sil-
vopastoral systems that combine management of trees 
with cultivation of arable crops and/or permanent 
grasslands with or without livestock. Agroforestry 
systems are more complex in comparison to other 
agricultural land-use systems such as monocropping 
systems or annual monocultures because of biological 
interactions between their components (Scherr 1991; 
Jacobs et  al. 2022). In addition, each component, 
i.e., the trees and crops or grassland, requires its own 
management which accounts for agricultural cycles 
that take place at different spatiotemporal scales 
(Scherr 1991).

This inherent complexity hinders the application of 
traditional statistical methods in the analysis of agro-
forestry experiments (Balandier and Dupraz 1998; 
Birteeb et al. 2020) as many of the available statisti-
cal tools were developed for the analysis of bio-phys-
ico-chemical properties in agricultural experiments 
involving annual crops (Verdooren 2020). In case 
of the latter, the number of plots (including replica-
tions and control plots) is determined by the number 
of treatments and treatment combinations, the vari-
ance of the target parameters and the required level of 
statistical significance and power (Kumle et al. 2021; 
Piepho et al. 2022). In case of the former, the plot size 
and distance must be sufficient to account for intra-
system interactions and to avoid confounding effects 
of neighboring treatments.

Trees have been found to influence neighbor-
ing treatments above- and belowground (Somarriba 
et  al. 2001) with microclimate effects, e.g., changes 
in wind speeds, reaching over distances of up to 30 
times the tree height (Böhm et  al. 2014). Further-
more, long time periods are required to accommodate 
management activities (Balandier and Dupraz 1998; 
Lovell et al. 2018). Considering the limited resources 
in terms of land, labor, and funds; designing an agro-
forestry experiment, with enough replications or con-
trol treatments to allow for a robust statistical analy-
sis, might not be feasible (Stamps and Linit 1998).

Hence, an alternative experimental design option 
involves investigating one or several individual 
agroforestry systems which are subsequently com-
pared against an adjacent non-agroforestry system 
that serves as a control. The control site is expected 

to match the soil and microclimate conditions which 
can be unrealistic because of differences in topogra-
phy, soil conditions and management history (Bal-
andier and Dupraz 1998). When a paired experimen-
tal design is employed i.e., several pairs of sites are 
available, the analysis can be straightforward and 
involve e.g., a paired t-test. However, when data is 
collected within a single agroforestry site, there is no 
true replication and subsequent treatment randomiza-
tion, which are prerequisites for agricultural experi-
ments (Piepho et al. 2013).

Furthermore, to study the interactions between 
trees and crops or grassland within a single agrofor-
estry system, the sampling strategy typically involves 
a point-transect design, where samples are collected 
in the tree row and at defined distances from the tree 
trunk in the arable or grassland strip. This approach 
leads to a hierarchical data structure characterized by 
a spatial autocorrelation within and between transects 
and to pseudo-replication if samples collected at dif-
ferent distances are treated as replicates (Stamps and 
Linit 1998). Thus, the assumptions for some of the 
commonly applied statistical tests such as analysis of 
variance (ANOVA) are violated, rendering the data 
analysis and subsequent interpretation invalid.

In such cases, multilevel models offer a practical 
alternative. Multilevel models such as marginal mod-
els (MM), generalized linear and linear mixed models 
(GLMM and LMM), and generalized additive mixed 
models (GAMM) constitute a family of models which 
are an extension to linear regression that can be used 
to correct for spatial and temporal autocorrelation 
(Zuur et al. 2009; Muff et al. 2016). Multilevel mod-
els have been successfully applied in ecology (Fitts 
et al. 2021; Meeussen et al. 2021), agriculture (Maaz 
et  al. 2021; Kumar et  al. 2021) and forestry (Hall 
and Bailey 2001; Chen et  al. 2019).  Here, we high-
light their potential in agroforestry research through a 
comprehensive introduction to relevant literature.

To illustrate the key concepts presented in this 
Short Communication, we devised an easy-to-follow 
R script to be used alongside the crop yield data col-
lected at our case-study agroforestry system (see 
Supplementary Material 1 for site description and 
additional explanations of the model set-up as well 
as the final conclusions). The script details disci-
pline-specific approaches to multilevel model fitting 
and parameterization by focusing on data collected 
through transect sampling. Each section of this Short 
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Communication is represented in the R script (as 
separate steps) to facilitate translation of words into 
code. It is important to note that the R script is meant 
as a companion to the text and the carefully selected 
references and not vice versa. It offers an opportunity 
to use real-life agroforestry data and is expected to 
be modified by the reader as they go through the lit-
erature and the supplementary material at their own 
pace, trialing different approaches to modelling agro-
forestry systems.

Multilevel models in agroforestry research 
in temperate Europe

A review of 23 relevant publications (for details on 
methods and the query structure, see Supplementary 
Material 2) showed that recent (2019–2022) stud-
ies often focused on silvoarable systems, investigat-
ing a range of bio-physico-chemical parameters, i.e., 
soil organic carbon, microbial communities, and crop 

yield (Table 1). In 65% of all studies, samples were 
taken in point-transects with higher sampling density 
closer to the tree strips.

In 57% of the studies, multiple similar agrofor-
estry systems across a given region were investi-
gated, thereby constituting true replications. The 
preferred form of experimental control (70% of the 
total) involved an adjacent non-agroforestry system. 
Schmidt et  al. (2021) emphasized the importance of 
comparing soil texture among sampling locations, 
treating it as an indicator of comparability of soil con-
ditions between the control and the agroforestry plots. 
However, only a few studies reported comparability 
of soil conditions (e.g., soil texture) as well as dis-
tance to the control plot. No reviewed study used pure 
tree stands as a control for tree strips.

Multiple statistical approaches were utilized for 
data analysis, ranging from machine learning (e.g., 
Wengert et  al. 2021) to classical statistics such as 
ANOVA (e.g., Beule and Karlovsky 2021), lin-
ear regression (e.g., Markwitz et  al. 2020), and 

Table 1  Research papers published between 2019 and 2022 highlighting  different methodological approaches employed to study 
agroforestry systems in temperate Europe.

AFS agroforestry system, MEM multilevel models
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non-parametric statistical tests (e.g., Beule et  al. 
2020). Multilevel models were employed in less than 
50% of the publications with authors acknowledging 
the importance of accounting for spatial autocorrela-
tion when using the point-transect design (e.g., Par-
don et al. 2017). However, we noted a lack of clearly 
defined model structures in the published material 
as well as the need for uniform terminology, which 
would facilitate reproducibility and transferability.

Selection and classification of variables at different 
spatiotemporal scales

Spatial and temporal scales are important in agro-
forestry research because the effects of trees on and 
the interactions with their surrounding environment 
intensify as the system matures (Fig. 1; Step 1 of the 
R script: Selection and classification of variables). 
For example, the drivers of soil carbon storage range 
from soil physico-chemistry at the micro-scale to 
topography and soil texture at the local scale, to cli-
mate and vegetation cover at the global scale (Wies-
meier et al. 2019). Selecting variables at an appropri-
ate scale will aid in managing the noisy agroforestry 

Time

Spatial effects of trees on the surrounding environment 

Spatial autocorrelation

Hierarchical data 
structures 

Temporal 
autocorrelation

High volume of data

Non-linear interactions 
between variables

MM and (G)LMM MM and (G)LMM GAMM

Data complexity

Establishment phase Development phase Maturity phase

Major challenges for data analysis in agroforestry systems 

Fig. 1  The effects of space and time on the structure of agro-
forestry systems can be relevant to the selection of the most 
suitable statistical modelling approach. There is a compound-
ing of major challenges in data analysis that might entail  the 
use of different statistical tools at different life stages of the 

system. Abbreviations for exemplar modelling approaches: 
MM marginal model, GLMM generalized linear mixed model 
(for non-Gaussian distribution), LMM linear mixed model, 
GAMM generalized additive model
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data characterized by uncertainties, which persist 
even for well-established processes such as carbon 
sequestration (Mayer et al. 2022).

Important considerations prior to data analysis

Multilevel models are parametric statistical tech-
niques and thus, the assumptions of homogeneity of 
variance and normal distribution of residuals should 
be addressed during the analysis (Step 2 of the R 
script: Data exploration and linear regression fit). In 
addition to these routinely performed preliminary 
checks, a detailed data exploration should be car-
ried out following e.g., Zuur et  al.’s (2010) 10-step 
protocol. This step provides an additional benefit of 
exploring the relationships between variables. Non-
linear relationships can be captured by e.g., higher-
degree polynomial LMMs [see Slaets et al. (2021) for 
examples] or GAMMs with smoothing functions [see 
Hellmann et al. (2017) for examples]. Finally, to take 
full advantage of the flexibility offered by the multi-
level models, it might be beneficial to consider suit-
able data distributions (e.g., Gaussian for continuous, 
Poisson for count and density, or Gamma for con-
tinuous positive value-only data) (Bolker et al. 2009), 
especially in studies involving count data where over-
dispersion is a concern [see Young et al. (1999) and 
Harrison (2014) for examples].

In multilevel models, explanatory variables can 
be classified as fixed or random, depending on the 
research question, which makes it difficult to formu-
late universal definitions for fixed and random terms 
[see Harrison et al. (2018) for an introduction to the 
topic of fixed and random variables as well as to 
mixed effects modelling in R]. For example, an agro-
forestry system might have two tree planting schemes 
with a high and a low planting density in alternating 
tree strips, within the same field. The planting den-
sity of tree strips can be thought of as an agronomic 
intervention i.e., a treatment, and thus constitute 
a fixed effect (an explanatory variable). Alterna-
tively, tree strips can be treated as a grouping vari-
able, which should have a minimum of five levels to 
allow for variance estimation (Harrison et al. 2018), 
and thus, constitute random effects. In agronomic 
experiments, Piepho et  al. (2003) recommended for 
each experimental unit to be represented by a random 
effect in the model, i.e., random effects can represent 

individual plots, which can also be applicable to agro-
forestry systems, provided multiple measurements per 
plot were collected.

Accounting for spatially correlated data

When the data is scarce e.g., in an early stage of 
establishment of an agroforestry experiment (and pro-
vided that the sampling method permits), it might be 
prudent to correct for spatial autocorrelation through 
the application of marginal models (Step 3 of the R 
script: Fitting a marginal model). A marginal model 
is a regression model with only fixed effects and is 
used to analyze correlated data i.e., when there is a 
known dependency among residuals. These models 
estimate population-level (marginal) parameters and 
involve group wise correlations in contrast to multi-
level models that use individual points for the estima-
tion of random effects [see Pekár and Brabec (2016) 
for detailed examples of both, spatial and temporal 
correlations].

However, when the sampling scheme involves a 
hierarchical structure with nesting e.g., points are 
sampled within a transect which are nested within tree 
strips, including random effects (the variance–covari-
ance structure) might be preferable (Step 4 of the R 
script: Fitting LME: Selecting an error structure—it is 
recommended to investigate an interactive map of the 
research site starting in line 389 which demonstrates 
the  spatial patterns within individual transects). Fit-
ting the most complex variance–covariance structure 
constitutes a standard recommendation (Barr 2013) 
but significantly increases the data requirement, espe-
cially for random slope models (Harrison et al. 2018) 
[see Step 5 of the R script: Fitting LME: A random-
slope and intercept model for an example of non-
convergence]. Thus, simplifying complex structures, 
e.g., through the inspection of variance components, 
might aid the model selection process [see Crawley 
(2012) for specific examples and Zuur et  al. (2009) 
for a more general introduction to a 10-step protocol 
of model selection].
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Parametrization of the variance–covariance 
structure

When a variance–covariance structure is fitted (Step 
6 of the R script: Fitting LME: A random-intercept 
model), there is an assumption of covariance i.e., 
observations associated with the random effects are 
correlated (Bates et  al. 2015). For example, when 
fitting a random effect of transect, all measurements 
taken within the same transect are considered equally 
correlated. However, this is rarely a realistic assump-
tion, as Tobler’s Law states that “Everything is 
related to everything, but near things are more related 
than distant things.” (Tobler 1970). We can expect a 
stronger correlation between the plot closest to the 
tree strip and the plot located midway to the center of 
the crop strip than with the plot in the center. Thus, 
the parameterization of the covariance structure (e.g., 
through fitting of appropriate spatial correlation func-
tions) should be considered a part of the model fit-
ting procedure as described in Knörzer et  al. (2010) 
and Slaets et  al. (2021) (Step 7 of the R script: Fit-
ting LME: Error structure parameterization). It is 
important to note that parametrization of the covari-
ance structure precludes the use of summaries of the 
model fit i.e., computing of marginal and conditional 
 R2 values (Nakagawa and Schielzeth 2013; Stoffel 
et al. 2021) because it ignores the spatiotemporal cor-
relation and heterogeneity of variance [see Piepho 
(2019) for an alternative approach].

Improving quality assurance in European 
agroforestry research

As the interest in modern agroforestry systems con-
tinues to rise, it is essential to consider the different 
ways in which meaningful and appropriate data anal-
ysis can be carried out to inform agricultural practi-
tioners and policy makers. This Short Communication 
highlights the potential of multilevel models and acts 
as a starting point for scientists who are considering 
applying multilevel models in an agroforestry con-
text but are still familiarizing themselves with the key 
literature, terminology, and R syntax. Based on the 
absence of model diagnostics in the reviewed agro-
forestry literature, we recommend that future stud-
ies include testing of model adequacy through e.g., 
plotting standardized residuals against fitted values, 

against each covariate in the model and against each 
covariate not in the model, as well as using autocor-
relation functions and/or variograms to assess inde-
pendence of residuals when the data includes tempo-
ral or spatial aspects (Zuur and Ieno 2016; Step 8 of 
the R script: Model comparison and model diagnos-
tics and Step 9: Avoiding hasty conclusions with vis-
ualizations). Making these diagnostic plots available 
alongside clearly defined model structures [see e.g., 
Beyer et al. (2022) for exemplar GLMM descriptions 
and Figure S3A-E in Supplementary Material 1 for 
exemplar diagnostic plots] will ensure higher trans-
parency and confidence in the experimental results. 
This will safeguard agroforestry research from possi-
ble model misuse identified in other fields of research 
(discussed in e.g., Bolker et  al. 2009; Dickey-Collas 
et al. 2014; Zurell et al. 2020).
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