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The global carbon sink potential of terrestrial
vegetation can be increased substantially by
optimal land management
Zongyao Sha1, Yongfei Bai2, Ruren Li3, Hai Lan4, Xueliang Zhang5, Jonathon Li6, Xuefeng Liu7, Shujuan Chang8 &

Yichun Xie 9✉

Excessive emissions of greenhouse gases — of which carbon dioxide is the most significant

component, are regarded as the primary reason for increased concentration of atmospheric

carbon dioxide and global warming. Terrestrial vegetation sequesters 112–169 PgC (1PgC=
1015g carbon) each year, which plays a vital role in global carbon recycling. Vegetation

carbon sequestration varies under different land management practices. Here we propose an

integrated method to assess how much more carbon can be sequestered by vegetation if

optimal land management practices get implemented. The proposed method combines

remotely sensed time-series of net primary productivity datasets, segmented landscape-

vegetation-soil zones, and distance-constrained zonal analysis. We find that the global land

vegetation can sequester an extra of 13.74 PgC per year if location-specific optimal land

management practices are taken and half of the extra clusters in ~15% of vegetated areas.

The finding suggests optimizing land management is a promising way to mitigate

climate changes.
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Keeping the global temperature increase below 1.5 °C in
accord with the Paris Agreement would require prompt
and substantial reductions in greenhouse gases (GHGs)

emissions on the global scale1. Despite considerable effort inter-
nationally, many countries are likely to miss the emission control
targets proposed in the Paris Agreement. The world is on track
for more than 3 °C of warming by the end of the century2,3.
Numerous policies have long been proposed to cut down GHGs
emissions, including resorting to renewable energy, popularizing
electric vehicles, optimizing land-use policies, as well as other
GHGs cutting policies or programs1,4. Unfortunately, those policy
options seem not being effectively deployed, given the continuous
increase of the emissions of GHGs5,6. The atmospheric CO2 has
risen beyond 400 ppm in recent years, which is attributed to
carbon emissions from fossil fuel combustion and explains the
1.5 °C increase in air temperature since the 1880s7,8.

Though cutting fossil fuel consumption provides a direct
option to reduce carbon emissions, it shows limited effect in
mitigating atmospheric CO2 because fossil energy still powers the
economy in many countries4,9. Vegetation dominates most ter-
restrial ecosystems (e.g., forests, grasslands, croplands, shrub-
lands, and savannas) and absorbs 112–169 PgC each year from
the atmosphere through a biochemical process called
photosynthesis8,9. Improving vegetation carbon sequestration
provides an alternative measure to counteract the excessive car-
bon emissions9,10. The net amount of carbon captured by plants
through photosynthesis over a given period is called net primary
production (NPP)11,12. NPP is closely related to a carbon sink,
which is equivalent to NPP minus the component of soil het-
erotrophic respiration13; thus, NPP serves as a good proxy for
evaluating carbon sink. As a key component of energy and mass
transformation in terrestrial ecosystems, NPP depends on various
factors, such as the supply of nutrients, water availability, soil
profile characteristics, and landscape attributes (e.g., terrain and
drainage)14,15. Those factors can be broadly categorized as the
following three groups16: (1) climate impact (e.g., precipitation
and temperature); (2) nonclimatic natural factors such as soil
property, landforms, and biomes; and (3) human-related
(HUMAN) land-management practices.

First, vegetation will not attain the saturation of carbon
sequestration capacity without appropriate climatic conditions10.
Lack of rainfall causes physiological stress and limits vegetation
photosynthesis in most arid regions14. The dependence of vege-
tation carbon sequestration on climatic factors is reflected by
most NPP models11. For example, the climate-driven Miami
model, which has been widely applied to map large-scale
NPP10,17,18, highlights the climatic factors’ importance as vital
drivers to carbon sequestration. Second, vegetation cannot max-
imize carbon sequestration without favorable natural conditions
such as landforms15, soil properties19, and biome groups10.
Lastly, carbon sequestration can be updated by land-management
practices (LMPs)9, i.e., one LMP may result in higher or lower
carbon sequestration than the other, under the same environ-
mental contexts (the climatic and nonclimatic conditions).

Previous studies confirm that land use and management stra-
tegies have a massive effect on carbon sequestration from
vegetation18,20,21. An optimal land-management practice
(OLMP) refers to an LMP that helps sequester higher, if not
the highest, potential carbon from the managed vegetation given
the current climatic, nonclimatic, and HUMAN conditions. Once
LMPs are replaced with OLMPs, the vegetation will sequester
more carbon. It is valuable to model the difference in carbon
sequestration between with and without OLMPs, called carbon
gap hereafter, to make smart land-management policies and
mitigate global climate changes. In a broad sense, OLMPs include
removing negative human-related disturbances in naturally

vegetated areas21, and applying human-intervened programs/
practices that help improve vegetation productivity or restore
previously degraded vegetation22,23. The United Nations Con-
vention to Combat Desertification program introduces over
1000 sustainable land-management practices based on the type of
activities targeting to promote agricultural production while
simultaneously supporting the environmental functions24.
OLMPs include but are not limited to sustainable land-
management practices, considering that all existing LMPs could
be potentially selected as OLMPs if they help enhance vegetation
productivity. For example, appropriate tillage practices on crop-
land may increase agricultural production (which in most cases
also improves NPP); similarly, protection measures for trees close
to road networks are necessary to improve forestry NPP25. Some
cases of OLMPs are illustrated in Supplementary Table 1. The
impact of OLMPs on vegetation productivity pertains to local
environmental and socio-economical contexts. The carbon gap of
specific OLMPs can be evaluated by comparing NPP of field
experiments with and without the OLMPs implemented. Because
the global natural and socioeconomic contexts exhibit manifest
spatial variations, there are no universally applicable OLMPs.
There is also a need for mapping carbon gaps through a globally
and locally consistent approach so that both global comparison
and local policy enactment are supported26. This work addresses
the following questions: how much more carbon (i.e., carbon gap)
could be further sequestered from global terrestrial vegetation
with OLMPs implemented? How can the location-dependent
OLMPs be decided from the local contexts at each location?
Where do the most sensitive areas showing carbon sequestration
improvement locate?

Results
Global carbon gap modeling and mapping. The temporally
averaged total carbon gap (during 2001–2018) for the vegetated
land area is estimated to be 13.74 PgC yr−1, with a spatially
averaged carbon gap flux density of 124.3 gCm−2 yr−1 (Supple-
mentary Table 2). Considering that the terrestrial NPP totaled
67.90 PgC yr−1, ~1/5 more carbon can be added to the existing
vegetation carbon sequestration if OLMPs are implemented. It
was reported that the global fossil fuel emissions in 2019 were
about 10.1 ± 0.6 PgC4. When the ratio of soil heterotrophic
respiration (RH) to NPP is about 0.71~0.74 (see “Methods”), the
total carbon gap of 13.74 PgC yr−1 means reducing an extra
3.5~4.0 PgC yr−1 from the atmosphere and compensating more
than 1/3 of the global fossil fuel emissions. Fossil CO2 emissions
in China, the United States of America (USA), and the European
Union (EU28) contribute more than half of the global total,
amounting to 2.75, 1,47, and 0.93 PgC in 2018, respectively4. Our
analysis reveals that China, USA, and the EU28 could sequester
an extra 0.29–0.32, 0.40–0.45, and 0.26–0.29 PgC in 2018 from
the atmosphere by introducing OLMPs, accounting for 11–12%,
28–31%, and 27–31% of the fossil CO2 emissions, respectively.

The terrestrial carbon gap flux showed significant spatial
variations (Fig. 1). Locations with higher carbon gap density
indicate that their current LMPs are highly recommended to be
replaced with the OLMPs identified from their neighborhoods,
aiming to improve NPP and thus narrow down the carbon gap.
OLMPs could take different forms depending on the local
environmental and social conditions (with typical examples
illustrated in Supplementary Table 1). The above-mentioned
LMPs, if proved to be effective in improving vegetation
productivity historically and thus called OLMPs, can promote
vegetation carbon sequestration once transferred/copied to
neighboring locations with identical local conditions and lower
NPPCR, or the climate-rectified NPP (see “Methods”). Conversely,
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in grassland ecosystems where degraded vegetation showed
decreased productivity due to overgrazing27, measurements such
as destocking rate or rotational grazing in a neighborhood could
increase vegetation productivity9,28; thus, the practices of
destocking and rotational grazing can be taken as OLMPs.

The carbon gap differs among continents and biomes. Con-
siderable differences in the flux density of the carbon gap and NPP
were observed among the 12 continents/regions (Fig. 2 vs. Sup-
plementary Fig. 2). The total carbon gap and NPP of the continents/
regions are summarized in Table 1. Central America and Southeast
Asia present the highest carbon gap flux, reaching 348.3 and
260.7 gCm−2 yr−1, respectively; they can capture an extra portion
of 0.17 and 1.11 PgC every year, respectively. Africa and North
America have the largest vegetated area, and they can capture an
extra 2.37 and 1.86 PgC yr−1, respectively. South America ranks the
third-largest in the vegetated area (i.e., 16.58million km2); because

of its relatively high carbon gap flux which amounts to 167.6 gCm
−2 yr−1, the carbon gap totals 2.78 PgC yr−1, leading all the con-
tinents/regions. The total carbon gap is strongly correlated to the
total NPP at the continental/regional level (r= 0.98) (Table 1).
However, the carbon gap flux (density) is inconsistent with the NPP
density at the pixel scale and within each continent/region. At the
pixel level, the carbon gap flux and NPP flux are compared by the
ratio, i.e., the carbon gap flux divided by the NPP flux at pixel basis,
which clearly shows the high spatial variations (Supplementary
Fig. 3). Furthermore, within each continent/region, the carbon gap
density (Fig. 1) and NPP density (Supplementary Fig. 2) do not
correlate well. This finding is confirmed by the scatter plots between
the carbon gap density vs. NPP density (Supplementary Fig. 4) and
notably illustrated by two typical rainforests, i.e., the Amazon
rainforest located within South America and the African rainforests
(Supplementary Fig. 5). Both the rainforests show highly dense NPP
fluxes (1273.3 and 1062.7 gCm−2 yr−1 for Amazon and African

Fig. 1 Distribution of global carbon gap density (flux). The density is depicted through pixel values at 500m × 500m spatial resolution. The inset figure
shows the histogram of area percentage in each of the bins of the carbon gap density. The most left gray bar indicates that these areas (=4.8% out of all
vegetated areas which is 110.5 × 106 km2) have carbon gap=0 (where NPPCR≥NPPCR90th), indicating LMPs already being OLMPs). The most right
green bar, which also happens in about 4.8% of the total vegetated area, represents that those locations have the most highest carbon gap density
(>300 gCm−2 yr−1). The vertical line in the inset histogram shows the location of the averaged carbon gap density (i.e., 124.3 gCm−2 yr−1) over the whole
area of the 12 continents/regions (North America, Central America, South America, Europe, Africa, Australia, East Asia, North Asia, South Asia, Southeast
Asia, Southwest Asia, and Central Asia). A total of more 13.74 PgC yr−1 is expected to be sequestered from vegetation if OLMPs are implemented at a
global scale.

Fig. 2 Carbon gap and NPP density averaged at continent (region) level. The numerator and denominator of each fraction for the continents/regions
show carbon gap flux/density (gCm−2 yr−1) and NPP flux (gCm−2 yr−1), respectively.
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rainforests, respectively). These fluxes nearly double the globally
averaged NPP flux (614.2 gCm−2 yr−1); however, their carbon gap
flux averages 117.5 and 121.1 gCm−2 yr−1, respectively, at a com-
parable level to that of the continentally averaged level, i.e.,
124.3 gCm−2 yr−1. The carbon gap varies among different biomes
(see definition in Supplementary Table 3 and Supplementary
Fig. 6). Grasslands and croplands disclose the maximum carbon gap
density, reaching 138.3 and 137.2 gCm−2 yr−1, respectively (Fig. 3).
Forests show somewhat limited potential in the carbon gap, only
107.99 gCm−2 yr−1 in the flux and 2.64 PgC yr−1 in the total,
though the forests NPP flux almost doubles the global averaged
(1106.2 gCm−2 yr−1 vs. 614.2 gCm−2 yr−1). The total NPP of
forests is more than 1/3 of all other vegetation types together (i.e.,
27.04 PgC yr−1 vs. 67.9 PgC yr−1) (Fig. 3 and Supplementary
Fig. 7). The other woody vegetation (OWV), though presenting

much lower NPP flux and total NPP, shows a carbon gap flux and
total carbon gap comparable to those of forests, which are
107.4 gCm−2 yr−1 and 2.75 PgC yr−1, respectively. Because grass-
lands cover the largest area (46.97million km2, Supplementary
Table 4) and present the highest carbon gap flux, i.e., 138.3 gCm
−2 yr−1, the total carbon gap accounts for nearly half of the all
summed total, reaching 6.5 PgC yr−1. Croplands can sink atmo-
spheric CO2 with the adoption of improved context-specific land
management29. Croplands show relatively high carbon gap flux,
137.2 gCm−2 yr−1. However, croplands cover the least land area
(13.52 million km2), making the total carbon gap the lowest, i.e.,
1.86 PgC yr−1 only.

The carbon gap flux presents a strong clustering pattern, which
is reflected by the comparison between the accumulative carbon
gap and the accumulative sliced vegetated area using the carbon
gap flux from low to high (Fig. 4 and Supplementary Fig. 8). On
average, ~50% of the total carbon gap comes from only ~15% of
the global vegetated area. In terms of OLMP implementation, the
finding suggests that only a small part of the prioritized vegetated
area, i.e., ~15% of total vegetated coverage, would add more
6.87 PgC yr−1 (i.e., 50% of the total carbon gap) in vegetation
productivity.

Human activities strongly affect the carbon gap. We examine
the relationship between the carbon gap and the population, as
human density is a good indicator of human activities30. The
world population varies substantially over the space between
continents/regions (Fig. 5 and Supplementary Table 5). South
Asia, East Asia, and Southeast Asia present the most densified
population, followed by moderately populated Southwest Asia,
Europe, and Africa. At the global level, there exists no close link
between the carbon gap flux and population density (Pearson’s
correlation coefficient r= 0.27; see Supplementary Table 5).
However, they demonstrate strong correlations at the continental/
regional scale. The β coefficients of their regression lines are

Table 1 Statistical summary of the total carbon gap and NPP
of the continents (regions).

Continent Veg. area
(106 × km2)

Carbon gap
(std.) (PgC yr−1)

NPP (std.)
(PgC yr−1)

Europe 9.24 0.95 (0.05) 5.7 (0.39)
Africa 19.51 2.37 (0.13) 12.45 (0.83)
Australia 7.49 0.67 (0.05) 2.93 (0.33)
East Asia 11.66 1.94 (0.10) 8.54 (0.42)
North Asia 13.28 0.91 (0.06) 4.72 (0.29)
South Asia 4.03 0.56 (0.02) 1.64 (0.09)
Southeast Asia 4.26 1.11 (0.07) 4.76 (0.25)
Southwest Asia 1.93 0.26 (0.02) 0.73 (0.06)
Central Asia 3.18 0.17 (0.01) 0.66 (0.09)
North America 18.89 1.86 (0.17) 8.71 (0.82)
Central America 0.5 0.17 (0.01) 0.64 (0.04)
South America 16.58 2.78 (0.21) 16.43 (1.31)
Total 110.54 13.74 (0.78) 67.90 (3.86)

The total carbon gap and total NPP are both presented with averaged value ± standard deviation
(std.) for each continent (region) over the years during 2001–2018 (n= 19). Note that the effect
of reducing atmospheric CO2 from the carbon gap is subject to vary due to soil heterotrophic
respiration (RH) which is estimated to be 0.71–0.74 (see “Methods”). The averaged carbon gap
and averaged NPP for each continent/region are significantly correlated (P < 0.01, Pearson
correlation coefficient r= 0.98).

Fig. 3 Comparison of the carbon gap and NPP across biomes. The
statistics summarize the carbon gap and NPP (total and flux) of the global
vegetated area (see more on the definition of the vegetated area in
Supplementary Table 3).

Fig. 4 Accumulative total carbon gap against the accumulative total
vegetated area. The whole vegetated area is first sliced into sub-areas
using the percentiles of carbon gap flux (from low to high) at an interval of
5%, i.e., 0~5%, 5~10%, …, and 95~100%. The accumulated area in the order
of the percentiles is depicted on the X axis. The corresponding accumulated
total carbon gap is shown on the Y axis. The horizontal line (A) shows the
location of half (50%) of the accumulative total carbon gap. The vertical
line (B) denotes the location of the separator that divides the accumulated
areas into two equal parts (low flux side and high flux side), where both
sides collect half (50%) of the total carbon gap. While representing only
~15% of the total area, the high flux side collects half of the total
carbon gap.
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positive and statistically significant over all the continents
(Table 2 and Supplementary Fig. 9). The goodness of fit of the
regression models (R2) differs probably due to the varied spatial
configuration in population distribution and biophysical envir-
onments reflected by LVS factors. The findings suggest that the
areas with intensive human influences are more likely to note
high carbon gap flux, primarily observed in densely populated
areas (Figs. 1 and 5). At the same time, the impact on the carbon
gap from human activities is not independent of the biomes
distribution, which is noticeably observed in the plain region of
Eastern China and some plain regions of India presenting the
most densely populated but relatively lower carbon gap flux
(Figs. 1 and 5). Those plain regions show relatively low NPP flux
(Fig. 5 and Supplementary Fig. 2), and thus the carbon gap
density will also be low (see “Methods”). One explanation is that
these plain regions have long been cultivated. These regions’ crop
production management practices are well optimized and fit their
environments. In other words, these regions have realized OLMPs
to some extent. Therefore, the NPP variability is very limited in
these regions. As a case of human activities, updating LMPs can
alter vegetation NPP in terrestrial ecosystems, either positively or
negatively22,28. The study verifies that human activities have
generally increased the carbon gap in the past two decades and
thereby, policy interference should focus more on those highly
populated areas.

Discussion
The Paris Climate Agreement proposed national contributions to
the goal of holding global warming to well below 2 °C3. Assessing
the carbon gap, i.e., how much more carbon is to be sequestered
through optimal land-management practices (OLMPs), is helpful
to mitigate climate changes. This study combines time-series
remote sensing datasets, partitioned landscape–vegetation–soil
(LVS) zones, and distance-constrained zonal analysis to identify
OLMPs and assess the carbon gap (see “Methods”). We estimate
that ~1/5 more carbon, totaling 13.74 PgC yr−1, could be added
to the current NPP from global terrestrial vegetation if the
identified OLMPs get implemented, or a net effect of reducing
3.5–4.0 PgC yr−1 from the atmosphere. On average, the carbon
gap flux is 124.3 gCm−2 yr−1, with large variations among the
continents/regions and the vegetation biomes. Central America
and Southeast Asia present the highest carbon gap flux, reaching
348.3 and 260.7 gCm−2 yr−1, respectively. Grasslands show the
most potential in improving carbon sequestration, with a carbon
gap flux of 138.3 gCm−2 yr−1 and a total carbon gap of
6.5 PgC yr−1. Half of the total carbon gap concentrates in ~15%
of the vegetated area, where particular policy-making attention
needs to focus. In other words, location-dependent OLMPs
should be prioritized to fill the carbon gaps, particularly in the
~15% areas with the highest potential.

Improving land-management actions can add to nationally
determined contributions (NDCs) to the Paris Agreement31,32.
Previously, it was reported that land use, land-use change, and
forest (LULUCF) sector could contribute to as much as 20% of
the mitigation potential of NDC targets at the global level33. Our
study suggests the contributions from LULUCF to NDC targets
might be greatly underestimated, as applying OLMPs alone can
reduce more than 1/3 of the current global fossil fuel emissions.
The net atmospheric carbon reduction from OLMPs varies
among countries/regions, including China, USA, the EU28, and
India, which have the most fossil carbon emissions or/and the
largest population (Supplementary Table 6)4. As the largest
population in the world, China emits the most total greenhouse
gases in recent years4. China has declared to realize the peaking of
carbon emissions around 2030 in its NDC under the Paris
Agreement. Successfully fulfilling the NDC targets depends on
substantial efforts to fully implement all current policies and
adopt more effective policies after 202034. Implementing OLMPs
could account for 11–12% of its current carbon emissions, which
can play an important role in achieving the NDC target of
the country. USA is one of the most developed countries having
the second-largest carbon emission and has promised to achieve

Fig. 5 Distribution of world population density. Gray background is non-vegetated (see biomes definition in Supplementary Table 3) that is excluded from
analysis and white areas show population density 0.

Table 2 Regression between carbon gap flux and population
density.

Continent Slope (β) t-valuea −95%b +95%c R2

Europe 12.48 9.48* 9.71 15.24 0.83*

Africa 11.29 9.95* 8.82 13.76 0.89*

Australia 79.92 15.14* 68.16 91.68 0.96*

East Asia 6.53 6.80* 4.47 8.59 0.77*

North Asia 145.76 8.96* 110.86 180.66 0.85*

South Asia 2.69 4.23* 1.31 4.06 0.59*

Southeast Asia 5.14 3.75* 2.23 8.05 0.47*

Southwest Asia 11.49 3.48* 4.56 18.42 0.40*

Central Asia 12.51 11.54* 10.21 14.81 0.89*

North America 20.78 36.28* 19.54 22.06 0.99*

Central America 14.16 4.17* 7.01 21.28 0.49*

South America 28.16 10.02* 22.16 34.15 0.87*

*Significance level= 0.01, a the t-value for the slope (β), showing significant (P < 0.01) and
positive (slope > 0) for all the continents/regions, b95% lower, and c95% upper bound for
the slope.
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26–28% emission reductions below the 2005 level in 2025 in its
first NDC and 50–52% reductions in 2030 in the second.
Implementation of OLMPs in USA will contribute 27–31% car-
bon emission reduction. As the world’s biggest economy and the
third biggest carbon emitter, the EU28 recently set its NDC target
to a net decrease in emissions by 55% from the 1990 level by
203035. The carbon gap through implementing OLMPs could
contribute 28–31% reduction of the EU28’s fossil carbon emis-
sions, compensating more than half of its NDC target. India is the
world’s second-largest populated country which emitted 0.74 PgC
in 2018. The NDC target from India pledges 33–35% reduction in
the emissions intensity of its GDP from the 2005 level by 203036.
Implementation of OLMPs can help India neutralize 15–16%
carbon emissions at the level of 2018.

The varied carbon gap among different biomes provides
essential information for designing OLMP implementation
strategy. The higher carbon gap fluxes in grasslands and crop-
lands indicate that they have a quicker or more sensitive response
to human activities (i.e., updated LMPs) than the forests and
OWV. For grasslands and croplands, vegetation productivity
improvement (or degradation) may take a shorter period to
appear (e.g., within a calendar year) once LMPs are updated.
Conversely, apart from abrupt intervention from human activities
such as massive reforestation or deforestation9, forests and OWV
vegetation may take a relatively longer time to show up the effect
from updated LMPs. Thus, grasslands and croplands have the
advantage of showing immediate benefit, i.e., increased carbon
sequestration, from the implementation of OLMPs. On the other
hand, it requires a long-term plan to improve carbon sequestra-
tion for forest and OWV ecosystems.

OLMPs correspond to one or a set of LMPs that have his-
torically proved to be able to produce higher NPPCR (≥90th
percentile of NPPCR) at locations within an environmentally
(climatically and non-climatically) homogeneous neighborhood.
In the farm-dominated regions, LMPs such as cropping rotation,
farm irrigation, or compost amendments effectively improved
agriculture productivity9. Multiple cropping, fertilizer application,
and irrigation in China and India’s agricultural lands had con-
tributed to the greening Earth as a result of an observed increase
in green leaf area37. Cover crops are commonly included in
strategies aimed at increasing agricultural production38. Planting
cover crops play an important role in improving the productivity
of subsequent crops39. Reforestation, or planting trees in areas
that have been degraded or deforested, can promote restoration of
forest structure and vegetation productivity by regrowing tree
canopy and preserving biodiversity, thus improve carbon
sequestration40. The previous study suggests that land-cover
transformation from one type to another, e.g., afforestation from
croplands, can sequester more carbon22. However, while affor-
estation has been suggested for degraded croplands22,23, concerns
arise from decreased food supply due to a reduction in croplands
resulting from afforestation. Hence, improving carbon seques-
tration through land conversions is not widely acceptable.
Instead, it achieves more ecological and social benefits to obtain
the carbon gap by tailoring land-management practices (i.e., by
adopting OLMPs) without changing land use or land-cover types.
Moreover, the referenced OLMPs are located within a neigh-
borhood of ~20 km, which provides convenience for field ver-
ification and result evaluation in OLMPs implementation.

Nevertheless, there are a few concerns that may cause uncer-
tainties, requiring further improvement and exploration. First, the
referenced target NPP, i.e., NPPCR90th, could come from optimal
LMPs that induce extra GHGs emissions, e.g., N2O (for instance,
fertilizer application in croplands). As a result, the net effect of
mitigating GHGs through OLMPs in some areas could be over-
estimated. Conversely, because the GHGs mitigation is estimated

based on historical LMPs, it is unrealistic to identify OLMPs that
are not historically present, meaning that the estimated carbon
gap is likely to be underestimated due to the lack of referenceable
OLMPs. Second, while land-management optimization can
achieve higher NPP (and vegetation carbon sequestration), an
implementation of OLMPs for ecological benefits (i.e., more NPP
and carbon sequestration) may contradict other socioeconomic
needs e.g., maximizing the production of grains or other edible
produces. Furthermore, implementing OLMPs could involve
extra input (e.g., labor or other resources), offsetting the will-
ingness to implement the OLMPs widely. Under those cases, the
land-management optimization could be adjusted to a lower
target potential NPP, e.g., from the current 90th percentile
(NPPCR90th) to the 80th percentile, which will allow more can-
didates of OLMPs for options. Third, the relative contribution
(RC, see definition in Eq. (2)) on NPP due to the climate varia-
tions could be biased. The assumption that the contribution from
HUMAN impact is reflected in the spatial variation of the
climate-rectified NPP (NPPCR) by subtracting RC from NPP in
LVS zones, as shown in Eq. (3), may not hold due to possible
interaction effect between the climate and HUMAN impact.
Furthermore, though the Miami model provided a good
approximation of the global distribution of potential vegetation
productivity41, it is empirically based, which could produce a
biased estimate of RC of the climate variations by Eqs. (1) and
(2). Improved methods capable of modeling the relative con-
tribution of climate variations in LVS zones are undoubtedly
helpful for a more accurate estimate of the carbon gap. Lastly,
while the landscape–vegetation–soil (LVS)-based segmentation is
designed to create biophysically homogeneous zones as the most
important biophysical units for assessing carbon gap, the LVS
segmented zones may not be internally homogeneous due to
possible noises in the landforms (L), vegetation (V) cover, and
soil (S) datasets. Notably, in areas such as mountainous regions
(e.g., Himalayas and Andes), which are characterized by com-
plicated landscapes, the relatively coarse spatial scale (500 m) of
the datasets adopted in this study may not be able to capture the
biophysical heterogeneity within an LVS zone. Such heterogeneity
not expected in an LVS zone due to the lack of high-quality
datasets at a global scale means more diversity in environmental
conditions, resulting in higher NPP variability and higher NPPCR
variability in the LVS zone. Thus, compared to many plain
regions across the global terrestrial ecosystems, areas with com-
plicated landscapes are more likely to present an overestimated
carbon gap. In addition, some other complex factors, such as
seasonal hydrologic pulsing42 and nitrogen deposition43, may
affect vegetation productivity but were not included in the current
design. As a result, the spatial variability in the biophysical
environments related to NPP might not have been fully addressed
by the LVS segmentation. Furthermore, wetlands were excluded
in the analysis in the carbon gap. Vegetation in wetland ecosys-
tems is sensitive to water depth variations (particularly in com-
plex terrains close to water bodies and lakes)44, hydrologic
alterations42, sediment and turbidity45, and even transferred
pollutant elements46. The impacts of these hydrological processes
on NPP are challenging to model at a global scale. Considering
that wetlands cover only about ~1% of the total land area (see
Supplementary Table 3), excluding wetlands should only have a
limited impact on the globally estimated carbon gap patterns.
Because the detailed biophysical and socioeconomic datasets
(including LMPs) are rarely available at a global scope, the
uncertainties raised from the lack of high-quality datasets are
challenging to address in this work. We suggest that refined
assessment of enhancing vegetation productivity through OLMPs
be conducted at a national scale with the support of detailed
socioeconomic contextual datasets and biophysical datasets for
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different terrestrial ecosystems. Nevertheless, the potential of
improving carbon sequestration through OLMPs is confirmed,
though designing practicable schemas for OLMPs implementa-
tion requires multiple participations from both governments and
private sectors to work together.

Methods
We divide the factors affecting vegetation carbon sequestration into three
categories16:

1. Climate impact (typically precipitation and temperature)
2. Other nonclimatic environmental/natural factors, including landforms (L),

vegetation (V) types, and soil (S) property
3. Human-related land-management practices (HUMAN)

Once the differed impact on vegetation carbon sequestration from the climatic
(1) and nonclimatic (2) is excluded, the difference in the carbon sequestration from
vegetation over space will be solely attributed to site-specific HUMAN (3) impact.
We apply net primary productivity (NPP) to indicate the capacity of vegetation
carbon sequestration in terrestrial ecosystems. The method is developed based on
the following assumptions:

● NPP is jointly affected by (1) climate impact, (2) LVS
(landscape–vegetation–soil) environmental or biophysical factors, and (3)
HUMAN activities (land-management practices, LMPs).

● Over a homogeneous LVS segmented zone, the climate factors and
HUMAN factors are the most important ones explaining the NPP variation
in an LVS zone. The climate’s potential impact on vegetation productivity
in an LVS zone can be indicated by climate-driven NPP models such as
Miami, called potential NPP (PNPP).

● The variation of NPP from the differed climate factors in an LVS zone can
be measured by a statistic called Relative Contribution (RC) of the climate
factors. RC is the difference between PNPP at a location in an LVS zone
and the averaged PNPP of the whole zone.

● RC is designed to rectify the relative impact of the climate factors on NPP
over an LVS zone to derive climate-rectified NPP, or termed as NPPCR. The
variation of NPPCR over the LVS zone is then attributed to HUMAN
influence.

Our main objective is to assess how much more carbon (termed as carbon gap)
can be realistically achieved from global terrestrial vegetation by updating
HUMAN only, without converting land use and land cover or vegetation biomes.
We use publicly available time-series of datasets to analyze the carbon gap. Data
sources come from Google Earth Engine (GEE). Data preprocessing and analysis
are also performed on the GEE computing platform. There are four groups of data
sources involved, namely climate-related variables, (non-climate) physical envir-
onmental variables, NPP, and world population. Those datasets, if not at the scale
of 500 m, are uniformly be resampled to a resolution at 500 m. The following
explains the steps of data processing and analysis methods.

Region segmentation of homogeneous natural environments to detach non-
climate impacts on NPP variation. Region segmentation is performed by over-
laying the layers of landform (L), vegetation type (V), and soil type (S) to derive
homogeneous zones, known as homogeneous LVS zones so that all locations
(image pixels) in an LVS zone will have the same LVS# of landform, vegetation,
and soil type. In other words, over the pixels within the same LVS zone, the impact
from the non-climate environmental factors on the internal NPP variation is
uniform. Thus, any NPP variation within an LVS zone is attributed to varied
climatic and HUMAN impacts only.

The three environmental factors, namely landforms, biomes types, and soil
profiles, are chosen for LVS segmentation because of the following considerations.
First, landform properties are often used to represent the spatial variability of
hydrological, geomorphologic, and biological processes47. Here, we use the
classified landform cover from European Soil Data Centre (https://
esdac.jrc.ec.europa.eu) to indicate landform variations. This landform cover
includes 16 labels dynamically classified by an unsupervised nested-means
algorithm based on three geometric criteria (slope, surface texture, and local
convexity) from the Shuttle Radar Topography Mission 30 m (SRTM30) digital
elevation data48. Second, the International Geosphere-Biosphere Programme
(IGBP) land-cover classification schema of MODIS MOD12Q1 (asset ID=MODIS/
006/MCD12Q1 in GEE) is taken to map vegetation (biome) distributions.
According to the IGBP land-cover classification system, there are 17 labels, out of
which 13 are closely related to vegetation cover types. Five of them (13# urban and
built-up lands, 15# snow and ice, 16# barren, 17# water bodies, and 11# permanent
wetlands) are excluded from further analysis (Supplementary Fig. 6 and
Supplementary Table 3). Wetlands have been shown to play an important role in
global carbon exchange49. However, our exploratory analysis reveals that spatial
variation of NPP in wetlands in most areas is huge, which we believe could not be
explained simply by the biophysical environment differences indicated by LVS
factors. We attribute the large NPP variation in wetlands to other factors such as

variations in water depth (in complex terrains close to water bodies and lakes)44,
hydrologic alterations42, sediment, and turbidity45, and even variations in pollutant
elements transferred through water movement46. Furthermore, the wetlands area
covers only about ~1% of the total land area (see Supplementary Table 3).
Excluding wetlands should have a limited impact on the globally estimated carbon
gap. Thus, only 12 land-cover classes were analyzed for sinking CO2 from the
atmosphere in this study. Lastly, Harmonized World Soil Database (HWSD, ver.
1.2 from Food and Agriculture Organization, http://www.fao.org/soils-portal) is the
most up-to-date world soil map that incorporates a data table of 48,148 soil profile
descriptions related to the various soils associated with each mapping unit, at a
spatial resolution 1 km at the equator50. Thus, soil-type classes from FAO-90 code
(SU_Code90), which includes 194 labels, are used for mapping soil-type cover.

Rectifying the climatic impact on NPP. NPP dataset provides a direct indicator of
carbon sequestration from vegetation. The MODIS MOD17A2H product (V6) is a
cumulative 8-day composite at 500-m spatial resolution. MOD17A2H includes a
layer of net photosynthesis, an indicator of NPP reflecting the spatiotemporal
variations in vegetation carbon sequestration.

In terms of the climatic factors, precipitation and temperature are the most
important elements because both of them were confirmed to alter NPP and thus
carbon uptake from vegetation51. Theoretical NPP has been modeled purely from
climatic conditions; the climate-driven empirical Miami model is considered the
first to compute PNPP using monthly precipitation and temperature and is often
used as a baseline for model comparison52. The modeled PNPP exhibits many
spatial variations, reflecting spatial heterogeneity of the impact of the climatic
factors.

We assume that the Miami model can be applied to measure the relative impact
on NPP from climate variations in an LVS zone. The Miami model is used to assess
the climate impact on PNPP, which takes the form51,

PNPP ¼ ƛ�min
3; 000

1þ e1:315�0:119t
; 3; 000� ð1� e�0:000664pÞ

� �
ð1Þ

where t is the annual average temperature (°C), p is the annual precipitation (mm),
and ƛ is a conversion coefficient (0.50 for woody ecosystems and 0.45 for
herbaceous) that converts dry matter to carbon unit (gCm−2 yr−1). TerraClimate
derived from climatically aided interpolation by combining WorldClim dataset and
Climatic Research Unit Time-Series dataset has been widely applied for mapping
regional and global ecological parameters53. It provides monthly precipitation and
maximum/minimum temperature at the spatial resolution of 2.5 arc minutes.
Equation (1) describes the relationship between PNPP and two climatic variables,
p and t.

For discriminating the varied climate impact on NPP in an LVS zone, a
location-dependent relative contribution (RC) of climate factor is defined as the
difference between PNPP at location i in an LVS zone g and the averaged PNPP of
the whole g, namely,

RCði; gÞ ¼ PNPPði; gÞ � PNPPMeanðgÞ ð2Þ
where PNPP(i,g) is PNPP at i in g, PNPPMean(g) is the mean PNPP of all the
locations in g, namely PNPPMeanðgÞ ¼

Png
i¼1PNPP i; g

� �
=ng and ng is the total

number of locations (pixels) in g. RC(i, g) is the difference between PNPP at i and
PNPPMean(g) due to within-group variation of the climate impact. Clearly,Png

i¼1RC i; g
� � ¼ 0. The rationale is that more favorable climate conditions at a

location i will result in a positive and higher RC(i,g) and vice versa.
The climatic and HUMAN impact determine the NPP variations across an LVS

zone characterized by the identical landform, vegetation cover, and soil properties.
The assumption is that the climatic impact on NPP variations can be estimated by
RC on a location basis in an LVS zone. Climate-rectified NPP (NPPCR) at location i
in g can be derived using the function,

NPPCRði; gÞ ¼ NPPði; gÞ � RCði; gÞ ð3Þ
NPPCR(i,g) is the rectified NPP at location i in g after the climatic impact on

NPP is removed by applying Eq. (3). Considering
Png

i¼1RC i; g
� � ¼ 0, it is clear thatPng

i¼1NPPCR i; g
� � ¼ Png

i¼1NPP i; g
� �

. In other words, the NPP distributions over g
are readjusted to NPPCR by taking the zonal climate variations into account
through Eq. (3). The internal variation of the computed NPPCR across all the
locations in the LVS zone g will then be attributed to HUMAN impact only. Thus,
after the climate rectification, NPPCR should be free of variations of the effect of
climate factors in each LVS zone. NPPCR would assume a constant value if there
were no differed HUMAN impacts within an LVS zone. When spatial variations of
NPPCR within an LVS zone are observed, it is attributed to HUMAN influence, i.e.,
the difference in land-management practices (LMPs). Those locations showing low
NPPCR are not managed well from the perspective of their current carbon
sequestration. Particularly, for locations with negative NPPCR (NPPCR < 0), the
HUMAN impact on NPP is negative. Thus, carbon gaps over these locations are
considerable. On the contrary, the locations (pixels) showing relatively very high
NPPCR values can be regarded where good LMPs are practicing. These good LMPs
can be deemed to be the optimal LMPs (OLMPs) under similar environmental
conditions over this LVS zone. The varied NPPCR in an LVS zone suggests that
introducing the LMPs in the current LVS zone can sequester more carbon. In other

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-021-00333-1 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |             (2022) 3:8 | https://doi.org/10.1038/s43247-021-00333-1 | www.nature.com/commsenv 7

https://esdac.jrc.ec.europa.eu
https://esdac.jrc.ec.europa.eu
http://www.fao.org/soils-portal
www.nature.com/commsenv
www.nature.com/commsenv


words, through human policy and management interventions, the LMPs at
locations (pixels) with lower NPPCR in the LVS zone could be replaced by the
OLMPs at places with higher NPPCR to increase carbon sequestration to a
higher level.

Computing carbon gap by distance-constrained (DC) zonal analysis. The
OLMPs and carbon gaps are processed for each location. The carbon gap at a given
location is computed as the gap from its current NPPCR to a target NPP level that is
the most achievable high NPPCR at locations with identical or similar environ-
mental contexts (i.e., in the same LVS zone). We develop a distance-constrained
zonal analysis to evaluate the target NPP level. Zonal analysis computes a set of
statistics (e.g., maximum, median, or minimum value) from the input values of
NPPCR within a zone54. The maximum zonal NPPCR (NPPCRMax) is the highest
NPPCR corresponding to the best land-management practice (BLMP) in the zone; if
BLMP is adopted, it will present the highest carbon gap. However, a zonal statistic
defined as the 90th percentile, or NPPCR90th, from the input vector of NPPCR is
selected as the referenced target NPP level in this study. The selection of NPPCR90th

instead of NPPCRMax in an LVS zone can exclude exceptionally high NPPCR values,
which are likely outliers resulting from noisy data, or are hardly achievable by other
locations even in the same LVS zone. Thus, the zonal statistic NPPCR90th provides a
more robust reference as the target potential NPP level. The LMPs at locations
showing NPPCR ≥NPPCR90th will be referenced as the OLMPs for other locations
in a similar environmental context.

The appraisal of the NPPCR90th at a location is conducted among locations
labeled as the same LVS# within a local neighborhood. It is argued that the
variations of NPPCR at locations within an LVS zone are attributed to the
differences in HUMAN impacts (i.e., LMPs). It is also acknowledged that other
omitted factors may impose an unneglectable impact on vegetation carbon
sequestration, which could produce certain uncertainties in the isolation of
HUMAN impact. Thus, the determination of OLMPs is preferably performed at
local scope. In other words, LMPs at locations too far away from the currently
examined location could be affected by too many heterogeneous economic, social,
and political factors. Furthermore, locally referenced OLMPs are more practical for
policy implementation and make it possible for on-site checkout.

A window size specifies a local neighborhood surrounding given location i, in
which the NPPCR values at all the locations with the identical LVS# in this window
are taken as input to compute the NPPCR90th. To decide the window size, a
stratified random selection approach is taken to sample 5000 points in the
vegetated land with the sample size weighted by the area of each of the biome types.
The samples’ histogram shows peak NPPCR90th along with the distance, which
presents a relatively stable stage when the distance is over 20 km from the piecewise
linear function fitting (Supplementary Fig. 1). Hence, the carbon gap at location i is
computed as the difference between the current NPPCR and the NPPCR90th within
the 20 km window in the environmentally homogeneous zone (i.e., LVS zone).

Carbon gapi ¼ maxð0;NPPCR
90th�NPPCR

iÞ ð4Þ
where NPPCR90th corresponds to the statistic of the 90th percentile for NPPCR
input at all locations labeled as the same LVS# in the distance-constrained
neighborhood, NPPCRi is NPPCR for location i, and max is the function for getting
the maximum value from the two input 0 and NPPCR90th–NPPCRi, meaning that if
the NPPCR at the location i is less than the NPPCR90th, the carbon gap will be
equivalent to NPPCR90th minus NPPCRi; otherwise, the land-management practice
(LMP) at location i has already reached the level of carbon sequestration under
OLMP and no extra space of carbon sequestration is available (i.e., carbon gapi= 0,
if NPPCRi ≥NPPCR90th). The carbon gap is not only dependent on the NPPCR
variability but also constrained by the level of NPPCR. It is reasonable that areas
with a low NPP (and accordingly NPPCR) density cannot be expected to have a
higher carbon gap density. Note that low NPP values in non-vegetated areas
(corresponding to the IGBP land-cover types labeled as 13# urban and built-up
lands, 15# snow and ice, 16# barren, 17# water bodies) which have been previously
excluded are not used in the NPPCR90th computation. Thus, the candidate of
OLMPs for a location is decided by referring to the LMPs within the distance-
constrained local window that boast identical environmental contexts but exhibit a
higher level of carbon sequestration (i.e., where NPPCR ≥NPPCR90th).

The carbon gap flux and NPP flux are shown in Fig. 1 and Supplementary
Fig. 2. The annual changes in the carbon gap and NPP are summarized in
Supplementary Table 4. The ratio map of carbon gap density to NPP density is
shown in Supplementary Fig. 3. The carbon gap and NPP (total and flux density,
respectively) among the biomes and continents/regions are compared in
Supplementary Fig. 7.

Effect of reducing atmospheric CO2 from the carbon gap. The resultant carbon
gap suggests an increase of NPP 13.74 PgC yr−1 with OLMPs implemented
(Supplementary Table 2). When considering the possible increase in soil hetero-
trophic respiration (RH), the improved NPP’s net effect (i.e., the carbon gap) on
reducing atmospheric CO2 is less than this total NPP. Previous studies show that
the total amount of RH is mainly proportional to NPP; for example, the previous
study showed that the ratio of RH to NPP was 0.7113. A meta-analysis on RH from
the available dataset estimated that the global weighted mean RH was
457 ± 139 gCm−2 yr−1 55. Our study indicates that the average NPP over the study

years is 614 ± 35 gCm−2 yr−1 (Supplementary Table 2), suggesting that the ratio of
RH to NPP is 0.74 (=457/614), which is reasonably close to the previous study13.
Taking the ratio of RH to NPP between 0.71 and 0.74 (though the ratio is subject to
vary on a broader scope under climate changes), an increase of NPP (the total
carbon gap) 13.74 PgC yr−1 is estimated to reduce 3.5–4.0 PgC yr−1 from the
atmosphere.

Correlation analysis between total carbon gap and total NPP. The relationship
between the total carbon gap and total NPP at the global scale is revealed by
Pearson’s correlation analysis on the two variables, i.e., total carbon gap and total
NPP for each continent/region, resulting in Pearson correlation coefficient r= 0.98
(Fig. 2). The relationship between the carbon gap flux and NPP flux at the sub-
continental/regional level is performed by slicing the carbon gap density into
partitions based on the ordered percentiles of the carbon gap flux (from low to
high) at an interval of 5%, i.e., 0–5%, 5–10%, …, and 95–100% for each continent/
region (Supplementary Fig. 4). Comparison between the total carbon gap and total
NPP for two typical regions, i.e., amazon rainforests and the rainforests of Africa, is
further illustrated in Supplementary Fig. 5.

Analyzing the distribution pattern of the carbon gap. For each of the 12 con-
tinents/regions, the carbon gap flux is grouped based on the sliced percentiles
(from low to high) at an interval step of 5%, i.e., 0–5%, 5–10%, …, and 95–100%.
The vegetated area and total carbon gap within each percentile are then computed.
The points denoted by the accumulative vegetated area and the accumulative total
carbon gap in each percentile are used to reveal the carbon gap’s clustering pattern
(Supplementary Fig. 8). The maximum accumulative total carbon gap is divided
into two half-half sections by a horizontal line, i.e., low flux density and high flux
density. The global clustering pattern in the carbon gap distribution is similarly
derived (Fig. 4).

Regression analysis between carbon gap and population density. For each of
the 12 continents/regions, the carbon gap density is grouped based on the sliced
percentiles (from low to high) at an interval step of 5%, i.e., 0–5%, 5–10%, …, and
95–100%. We then compute the accumulative total carbon gap and accumulative
total population. The relationships between the accumulative total population and
the accumulative total carbon gap are graphed by the sliced percentiles. Linear
regressions are fit for the partitions with the accumulative total carbon gap set as
the dependent variable and the accumulative total population for each percentile as
the independent variable (Table 2 and Supplementary Fig. 9).

The world population data comes from the Gridded Population of World (Ver.
4, from NASA Socioeconomic Data and Applications Center)56, which models the
distribution of the global human population for the years 2000, 2005, 2010, 2015,
and 2020 on 30 arc-second grid cells. A proportional allocation gridding algorithm,
utilizing millions of national and sub-national administrative units, is used to
assign population counts to 30 arc-second grid cells. The averaged population
density and carbon gap flux within each continent/regions is summarized in
Supplementary Table 5.

Validation of the estimated carbon gap. Systematic validation of the estimated
carbon gap is challenging because it requires long-term field experiments for dif-
ferent ecosystems and biomes across the globe. We test the result of the carbon gap
on the typical grassland in the Inner Mongolia Autonomous Region (IMAR) in
China based on long-term field monitoring of vegetation productivity under varied
LMPs. As vegetation in IMAR has been reported to be degraded due to human
activities, particularly overgrazing, many vegetation protection measures have been
introduced57. For example, exclosure grazing excludes grazing from a protected
area. Rotational grazing feeds animals in different fields in rotation depending on
the forage condition. Both exclosure and rotational grazing are believed to be good
strategies that have proved effective in protecting vegetation58. In addition, rest-
grazing allows grazing fields to be rested and grazed on a rotational base. Reseeding
is a measure to supplement grass seeds to improve vegetation density. These
measures have also been proved to be OLMPs in the grassland. Those vegetation
restoration measures have been implemented over the last two decades or so across
the IMAR grasslands.

Grassland vegetation NPP can be quantified by the method using maximum
peak live biomass59. A set of sites under the above-mentioned OLMPs, including
exclosure grazing, rotational grazing, rest-grazing, and reseeding, have been
selected across the pastoral counties in IMAR characterized by livestock grazing
(Supplementary Fig. 10). Those sites under OLMPs are small fenced or protected
areal patches. Vegetation productivities within and outside each site are compared
to estimate the effectiveness of vegetation protection from the OLMPs. Within and
outside each site stand for with and without implementation of the OLMPs,
respectively. Aboveground biomass was collected in pairs, namely in and outside
each protected area, at the time of peak vegetation growth in late August each year
during 2009–2015, led by the Inner Mongolia Grassland Survey Institute.
Estimating NPP from the maximum peak live biomass requires total biomass (the
sum of aboveground and belowground).

Unfortunately, the belowground biomass is not included in the historical
dataset. Previous studies conclude that the below-aboveground biomass ratio can
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be used to estimate the belowground biomass. However, this biomass ratio in the
grassland varies among different vegetation types. The below-aboveground biomass
ratio (b_a_ratio) of meadow steppe, typical steppe, and desert steppe in IMAR was
found to be 7.04, 5.16, and 5.32, respectively60. These ratio metrics are used to
estimate belowground biomass for different grassland biomes types in this study. In
addition, grazing animals consumed considerable biomass for sites outside the
protected area, which must be considered. There is no detailed multi-temporal data
about locations with varied grazing intensity. The biomass consumed by grazing
animals is estimated using the livestock statistics data from the yearly statistical
yearbook of IMAR for the pastoral counties. The livestock statistical data is
spatially re-allocated based on the area of the counties. The numbers of different
types of livestock are converted uniformly to the standard sheep units based on the
consumption of forage. Each sheep unit averagely consumes 1.8 kg dry forage
per day according to the national standard of calculation of rangeland carrying
capacity (NY/T 635-2015, Agriculture Ministry of China 2015). The total biomass
(T_BIO) gap between with and without OLMPs can be written as,

T BIO gap ¼ maxð0;T BIOin � T BIOoutÞ ð5Þ
where T_BIOin= (1 + b_a_ratio) × A_BIOin is the biomass density with OLMPs,
and A_BIOin is the aboveground biomass. Similarly, T_BIOout= (1 + b_a_ratio) ×
A_BIOout + 1.8 × days × sheep_unit, where T_BIOout and A_BIOout are the
biomass density and the aboveground biomass density outside the OLMPs
implemented area, respectively, days is the accumulated grazing days starting from
the date of vegetation green-up, which was set from May 1, to the date of the field
data collection, August 31, and sheep_unit is the grazing intensity in the sheep unit
outside the site.

The relative increase in vegetation productivity attributed to the
implementation of OLMPs, is the ratio of the biomass gap (T_BIO_map) to the
total biomass outside each site (T_BIOout, T_BIOout ≠ 0), which is formulated as,

Relative BIO gap ¼ T BIO map=T BIOout � 100% ð6Þ
where the computed Relative_BIO_gap indicates the possible increase of biomass
when OLMPs get implemented. Similarly, the ratio of the carbon gap to NPP
reflects the relative increase in NPP if the identified OLMPs are implemented at a
location, which takes the form as,

Relative Carbon gap ¼ Carbongap=NPP� 100% ð7Þ
A linear relationship between Relative_Carbon_gap and Relative_BIO_gap is

computed to reflect their consistency. A moderate correlation between the
estimated carbon gap and field observations was achieved, with R2 0.40 and a linear
regression coefficient (β) 0.94 (Supplementary Fig. 11), which suggested good
consistency between the estimated carbon gap and observed the increased potential
of the grassland biomass.

Data availability
The modeling results, in the form of the global carbon gap density and other report
sheets, are available at https://doi.org/10.1594/PANGAEA.926334. The datasets used to
compute the carbon gap for this study are publicly available, which has been described in
“Methods”.

Code availability
The Python code for processing the carbon gap, code_wld_nature.py, is available for
download from Pangea at https://doi.org/10.1594/PANGAEA.926334. This code works
on Google Earth Engine.
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