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Tropical deforestation causes large 
reductions in observed precipitation

C. Smith1 ✉, J. C. A. Baker1 & D. V. Spracklen1

Tropical forests play a critical role in the hydrological cycle and can influence local  
and regional precipitation1. Previous work has assessed the impacts of tropical 
deforestation on precipitation, but these efforts have been largely limited to case 
studies2. A wider analysis of interactions between deforestation and precipitation—
and especially how any such interactions might vary across spatial scales—is lacking. 
Here we show reduced precipitation over deforested regions across the tropics.  
Our results arise from a pan-tropical assessment of the impacts of 2003–2017 forest 
loss on precipitation using satellite, station-based and reanalysis datasets. The effect 
of deforestation on precipitation increased at larger scales, with satellite datasets 
showing that forest loss caused robust reductions in precipitation at scales greater 
than 50 km. The greatest declines in precipitation occurred at 200 km, the largest 
scale we explored, for which 1 percentage point of forest loss reduced precipitation  
by 0.25 ± 0.1 mm per month. Reanalysis and station-based products disagree on the 
direction of precipitation responses to forest loss, which we attribute to sparse in  
situ tropical measurements. We estimate that future deforestation in the Congo will 
reduce local precipitation by 8–10% in 2100. Our findings provide a compelling 
argument for tropical forest conservation to support regional climate resilience.

Tropical forests play an important role in moderating local, regional 
and global climate through their impact on energy, water and carbon 
cycles3. Crucially, tropical forests control local-to-regional rainfall pat-
terns1,2. Evapotranspiration from tropical forests is a strong driver of 
regional precipitation4,5 contributing up to 41% of basin mean rainfall 
over the Amazon and up to 50% over the Congo6. Evergreen tropical 
forests are dependent on high annual rainfall for their survival and 
productivity7, and forest–rainfall feedbacks have been highlighted as 
an important determinant of tropical forest stability4,5,8, amid concerns 
that the exacerbating impacts of droughts and deforestation could 
threaten their viability9.

Rapid loss of forests is occurring across the tropics10. Tropical defor-
estation warms the climate at local-to-global scales by changing the 
surface energy balance and through emissions of carbon dioxide3. The 
impact of tropical deforestation on precipitation is less certain with a 
range of processes operating at different scales. Small-scale deforesta-
tion over the southern Amazon has been shown to increase precipitation 
frequency11,12 owing to thermally13 and dynamically12 induced circula-
tions. At larger scales, deforestation reduces precipitation recycling 
leading to a reduction in precipitation1,14. Over Indonesia, deforestation 
has been linked to declining precipitation15, and exacerbation of El Niño 
impacts16. Global and regional climate models predict annual precipi-
tation declines of 8.1 ± 1.4% for large-scale Amazonian deforestation 
by 2050 (ref. 17), but an observational study of the impacts of tropical 
deforestation on precipitation across spatial scales is lacking.

Here we present a pan-tropical assessment of the impact of forest 
loss on precipitation based on measurements. We use a satellite dataset 
of forest cover change over the period 2003–2017 to identify areas of 

forest loss, with a focus on evergreen broadleaf forests of the Amazon, 
Congo and Southeast Asia (SEA; Fig. 1). To provide a robust assessment 
of the impacts of deforestation on precipitation, we analysed 18 differ-
ent precipitation datasets, including satellite (n = 10), station-based 
(n = 4) and reanalysis (n = 4) products (Extended Data Table 1). We 
compared the precipitation change over pixels experiencing forest 
loss with neighbouring pixels that had experienced less forest loss 
(Methods). This comparison against neighbouring pixels that will have 
experienced similar climate change focuses our analysis on the changes 
due to forest loss. To explore the impact of forest loss across scales, 
we analysed the impacts of forest loss on coincident precipitation at 
a series of spatial resolutions ranging from roughly 5 km to 200 km 
(0.05°, 0.1°, 0.25°, 0.5°, 1.0° and 2.0°).

Precipitation response to forest loss
Observed precipitation responses to tropical forest loss across 
multiple spatial scales and precipitation products are presented in 
Fig. 2. Satellite-based precipitation datasets suggest that tropical for-
est loss causes statistically significant (P < 0.05) declines in median 
annual mean precipitation at all scales analysed. At larger scales (>0.5°), 
reductions exceed 0.03 mm per month for each percentage point loss 
of forest cover (Fig. 2d–f). The largest changes are observed at the 2.0° 
scale (approximately 220 km at the Equator; Fig. 2f), for which each 
percentage point reduction in forest cover causes 0.25 ± 0.1 mm per 
month reduction in annual precipitation.

Analysis of precipitation change as a function of forest loss confirms 
larger reductions in precipitation for larger reductions in forest cover 
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(Extended Data Fig. 1), although with considerable variability, as seen 
in the modelled response18. Observed reductions in precipitation are 
consistent across satellite datasets, with all ten satellite precipitation 
products agreeing on the sign of the rainfall response at 2° over the 

tropics (Extended Data Fig. 2). At the 2° scale, significant (P < 0.05) 
reductions in annual mean precipitation with forest loss were observed 
across all tropical regions (Fig. 2). Reductions in precipitation at 2° 
based on satellite datasets ranged from 0.48 ± 0.36 mm per month in 

a

c

e

b

d

f

–30 –25 –20 –15 –10 –5 0
Forest cover change (%)

a

d

Fig. 1 | Tropical evergreen broadleaf forest cover loss from 2003 to 2017.  
a–f, Forest cover change at 0.05° (a), 0.1° (b), 0.25° (c), 0.5° (d), 1.0° (e) and 2.0° 
(f) resolution. The Amazon Basin, Congo Basin and SEA regions used in this 

study are outlined in purple. Maps of the different regions generated using 
Cartopy and Natural Earth51. Forest loss data from ref. 10.
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Fig. 2 | Reductions in precipitation over regions of tropical forest loss.  
a–r, Bars indicate the median absolute change in annual precipitation 
(millimetres per month) per percentage point of forest loss over 2003 to 2017 
in each region (tropics (a–f), Amazon (g–l), Congo (m–r), SEA (s–x)) for each 
precipitation dataset category (satellite, station and reanalysis). Results are 
shown for forest loss scales of 0.05° (a,g,m,s), 0.1° (b,h,n,t), 0.25° (c,i,o,u),  

0.5° (d,j,p,v), 1.0° (e,k,q,w) and 2.0° (f,l,r,x). Statistically significant (*P < 0.05; 
**P < 0.01) and nonsignificant (NS) differences in changes in mean precipitation 
(calculated as a multi-annual mean over 2003–2007 compared with 2013–2017) 
over deforested regions compared with control regions are indicated. Error 
bars show ±1 standard error from the mean. Datasets used in this analysis are 
detailed in Extended Data Table 1. ΔP, precipitation change.
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SEA to 0.23 ± 0.12 mm per month in the Amazon, and 0.21 ± 0.19 mm per 
month in the Congo for each percentage point loss in forest cover, with 
at least 8 out of 10 satellite datasets agreeing on the sign of the response 
within each region (Extended Data Fig. 2). In SEA, it has been suggested 
that proximity to the ocean and the replacement of tropical forest with 
plantations as opposed to pasture or cropland may cause reduced 
sensitivity of precipitation to deforestation1. Our analysis suggests that 
forest loss in SEA causes reductions in precipitation consistent with 
or greater than reductions in precipitation in the Amazon and Congo.

Station-based datasets and reanalysis products exhibit contrasting 
annual mean precipitation responses to deforestation at 2.0° (Fig. 2). 
Across the tropics, station-based and reanalysis datasets showed no 
statistically significant changes in annual mean precipitation due to 
forest loss (Fig. 2f), and there was little agreement with satellite datasets 
at the regional scale (Fig. 2l,r,x), with some non-satellite precipitation 
products showing small increases in annual mean precipitation due 
to forest loss. Sparse in situ measurements across the tropics, par-
ticularly over regions of forest loss, mean that station-based datasets 
provide a weak constraint on precipitation changes. A comparison of 
station-based precipitation datasets revealed higher levels of uncer-
tainty in the tropics, including the Amazon19. In regions of sparse data 
such as tropical forests20, interpolation methods may mask precipi-
tation changes driven by forest loss. Reanalysis products, which are 
numerical models constrained by empirical data, are also expected to 

be less reliable in regions where in situ data are limited21. Our results 
indicate that precipitation data based on satellite remote-sensing meas-
urements may have an advantage over tropical forest regions where 
in situ measurements are sparse or unavailable. For these reasons, 
we focus our analysis on satellite-based datasets and identify where 
agreement between datasets exists.

Our results are robust (Extended Data Fig. 3) to a range of methodo-
logical assumptions including the length of analysis period, the choice of 
start and end period and the spatial extent of control pixels (Methods).  
Our analysis period includes the 2015–2016 El Niño that resulted in 
negative precipitation anomalies over many tropical land regions (Sup-
plementary Fig. 1). We found that the precipitation response to forest 
loss was robustly negative during both El Niño and non-El Niño years 
(Extended Data Fig. 3). Over the Amazon and SEA, we see a stronger 
reduction in precipitation over regions of forest loss during El Niño 
years. The relative impact of El Niño on precipitation is smaller in the 
Congo22, and correspondingly we do not see a stronger reduction here. 
A stronger precipitation response to forest loss in regions and peri-
ods impacted by El Niño is probably due to higher transpiration rates 
observed in tropical forests during El Niño years23 and because rainfall 
is more sensitive to reductions in moisture recycling during drought 
years5,24. Climate change is expected to lead to increased droughts 
over many tropical regions25, which may be further exacerbated by 
ongoing deforestation.
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Fig. 3 | Changes in seasonal precipitation due to forest loss. a–d, Bars 
indicate the median change in precipitation (millimetres per month) per 
percentage point forest cover loss for satellite datasets during 2003–2017 for 
tropics (a), Amazon (b), Congo (c) and SEA (d). Error bars indicate ±1 standard 
error from the mean. Statistically significant (*P < 0.05; **P < 0.01) and 

nonsignificant (NS) differences in changes in mean precipitation over 
deforested regions compared with controls are indicated. Results are shown 
for the wettest 3 months (wet), the driest 3 months (dry) and the transition 
months (remaining 6 months). Datasets used in this analysis detailed in 
Extended Data Table 1.
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Seasonal precipitation reductions
Changes in precipitation due to forest loss during the dry, wet and tran-
sition seasons are nearly consistently negative (Fig. 3). For the tropics, 
absolute changes in precipitation with forest loss are greatest in the 
wet season (Fig. 3a, up to −0.6 mm per month per percentage point 
forest loss) whereas relative changes of precipitation with forest loss 
are similar (−0.2% per percentage point) across dry, wet and transition 
seasons (Supplementary Fig. 2). In the Amazon, deforestation causes 
the largest reductions in precipitation during the transition season 
(Fig. 3b) as has been found previously18,26,27.

Previous case studies have indicated that dry-season precipitation 
can increase over deforestation in the Amazon11,28,29. We observed a 
nonsignificant increase in dry-season precipitation due to forest loss 
in the Amazon at 2° as well as increases in the Congo at 1° and 2° (Fig. 3). 
In SEA, forest loss causes reductions in dry-season precipitation across 
all scales (Fig. 3d). The mechanism through which forest loss impacts 
precipitation is likely to change with both season and spatial scale. 
At the smallest scales (5 km), thermally driven impacts are likely to 
dominate, shifting to dynamically driven impacts through reductions 
to surface roughness, then to reductions in moisture fluxes and pre-
cipitation recycling at the largest scales12,30. Our observation of greater 
reductions in precipitation due to deforestation at larger spatial scales 
is consistent with a reduction in moisture recycling emerging as the 
dominant mechanism1.

Comparison with climate models
A meta-analysis of climate model studies (predominantly global mod-
els with >2° resolution) found that forest loss in the Amazon resulted 
in a mean reduction in annual mean precipitation of 0.16 ± 0.13% per 
percentage point17, overlapping with our value of 0.25% per percentage 

point (Supplementary Fig. 2). Fewer simulations have been conducted 
for the Congo, with models predicting a reduction in precipitation of 
0.16 ± 0.17% per percentage point2, similar to our reduction of 0.15% 
per percentage point (Supplementary Fig. 2). The large range of model 
estimates highlights the substantial uncertainty in model predictions. 
Our observationally derived analysis provides support for models that 
predict reductions in precipitation under regional deforestation at 
global climate model scales.

Our observational analysis documents the impacts of deforestation 
on precipitation across the tropics. Applying linear scaling to the reduc-
tions in precipitation observed in our analysis would suggest that com-
plete deforestation could result in reductions in annual precipitation 
of 10–20%. Previous estimates of the impact of complete deforestation 
on precipitation range from a 16% (ref. 17) to 55–70% (ref. 31) reduction 
in the Amazon and an 18% (ref. 2) to 50% (ref. 32) reduction in the Congo.

Impacts of future deforestation
To further explore how future deforestation might modify precipita-
tion, we combined our observationally derived estimates of precipita-
tion responses to forest cover loss with future projections of land cover 
change from a high-deforestation scenario (Methods). We estimate 
that forest loss from 2015 to 2100 (Fig. 4a) could lead to reductions 
of annual mean precipitation of up to 16.5 ± 6.2 mm per month in the 
Congo (Fig. 4b), equivalent to precipitation declines of 8–10%. Forest 
loss is projected to be greatest in the western and southern Congo 
(Fig. 4c), which will also experience the strongest reductions in pre-
cipitation (Fig. 4d).

The sensitivity of precipitation to the extent of forest loss is an 
uncertainty in our analysis, a result of the relatively short observa-
tional record, compounded by large spatial and temporal variability in 
precipitation. The response of precipitation to forest loss greater than 
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Fig. 4 | Impact of projected future forest loss on annual mean precipitation. 
a, Mean forest cover loss over 2015–2100 under Shared Socioeconomic 
Pathway 3–Representative Concentration Pathway 4.5 for the tropics, Amazon, 
Congo and SEA. b, Impact of projected forest cover loss on precipitation  

(P; ±1 standard error from the mean). c, Spatial pattern of forest cover loss.  
d, Predicted P change (∆P) in 2100 due to forest cover loss. Results are shown 
for 2.0° resolution. Maps of the different regions generated using Cartopy and 
Natural Earth51.
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30%, a threshold beyond which large reductions in precipitation have 
been postulated1, is one such uncertainty. Restricting our analysis to 
the forest losses of 0–30% that are well sampled in our observational 
dataset (Supplementary Fig. 3), through capping the impacts of greater 
forest loss at that of 30%, results in projected annual mean precipitation 
reductions of 6.5 ± 2.6 mm per month in the Congo and 6.2 ± 2.5 mm 
per month in SEA (Supplementary Fig. 4). However, restricting our 
analysis in this way is likely to underestimate the precipitation impacts 
over regions projected to experience the most extensive deforestation, 
including the Congo, where mean forest cover is projected to decline 
by 40 percentage points between 2015 and 2100 (Fig. 4a).

Previous studies have identified both linear9,33 and nonlinear1,31 
responses of precipitation to forest loss. Such nonlinear interactions 
and feedbacks have the potential to further amplify or moderate the 
responses predicted here14,34. Our analysis shows large reductions in 
precipitation for relatively small amounts of forest loss and evidence 
for reduced sensitivity of precipitation to additional amounts of forest 
loss (Extended Data Fig. 1). Assuming a nonlinear relationship between 
forest loss and precipitation (Methods) reduces our projected reduc-
tions in precipitation by around a factor of 2 (Supplementary Fig. 5). 
Our observationally based approach will miss tipping points in the cli-
mate system that might be reached as deforestation extent progresses 
further1. Such tipping points have been postulated for the Amazon 
under future global change25,35. Thus, the substantial declines in pre-
cipitation projected in our analysis should be viewed as a conservative 
estimate of the potential precipitation response to future deforestation. 
Nevertheless, our analysis suggests that deforestation can drive local 
and regional precipitation changes that may match or exceed those 
predicted due to climate change over the same period36,37.

Implications of precipitation reductions
Reductions in precipitation induced by forest loss have important impli-
cations for society and the sustainability of remaining tropical forest. 
Deforestation-induced reductions in precipitation affect agriculture1,14 
and hydropower generation38. On average, crop yields decline by 0.5% 
for each percentage point reduction in precipitation39. Our results 
indicate that forest-loss-induced changes to annual precipitation 
(Supplementary Fig. 2) could cause crop yields to decline by 1.25% for 
each 10-percentage-point loss of forest cover, potentially exacerbating 
the impacts of climate change and future drought events. The mainte-
nance of regional rainfall patterns due to forests in the Amazon has been 
valued at up to US$9 ha−1 yr−1 and US$1.84 ha−1 yr−1 through sustaining 
agricultural yields and hydropower generation, respectively40. Global 
cropland area increased by 9% in the past two decades, with even higher 
increases in South America and tropical Africa41 largely at the expense 
of natural ecosystems. Further agricultural expansion in tropical forest 
regions may lead to overall reductions in production if declines in yield 
due to deforestation-induced reductions in rainfall outweigh increased 
production from expanded agricultural area14.

Furthermore, reductions in rainfall over remaining areas of tropical 
forest are expected to lead to additional forest loss9 as well as impacting 
species composition22, carbon sequestration42 and fire frequency43. 
Reductions in dry-season precipitation pose a particular threat to forest 
viability by exacerbating seasonal droughts and potentially delaying 
the onset of the wet season and extending the length of the dry season. 
Increases in dry-season length over recent decades have previously 
been reported for the Amazon44 and the Congo45, possibly linked to 
land cover changes27.

Deforestation may also shift precipitation patterns, increasing 
dry-season rainfall immediately downwind of forest loss and decreasing 
rainfall in upwind areas12. Our approach is restricted to observing defor-
estation impacts up to scales of 200 km (Methods). At larger scales, 
insufficient pixels experienced forest loss during the relatively short 
period of satellite observations for a robust analysis. Deforestation is 

also likely to alter precipitation at these larger scales through reducing 
moisture recycling leading to reductions in rainfall downwind of forest 
loss4,5,9,35. The length scale of moisture recycling has been estimated at 
500–2,000 km in the tropics46, with a median value of 600 km in the 
Amazon5. In regions downwind of extensive forests, such as the south-
western Amazon, up to 70% of precipitation could be sourced from 
upwind evapotranspiration47,48. Tropical forest loss could therefore 
have severe implications for precipitation in these regions that are 
hundreds to thousands of kilometres downwind of the forest loss5. 
Through missing the impacts at these larger scales, our analysis is likely 
to underestimate the full impacts of deforestation on rainfall.

Our results highlight the importance of remaining tropical forests 
for sustaining regional precipitation. Despite efforts to reduce defor-
estation, rates of tropical forest loss have accelerated over the past two 
decades49. Renewed efforts are needed to ensure recent commitments 
to reduce deforestation, including the New York Declaration on Forests 
and The Glasgow Leaders’ Declaration on Forests and Land Use made at 
the 26th UN Climate Change Conference of the Parties, are successful. 
Global efforts to restore large areas of degraded and deforested land 
could enhance precipitation50, reversing some of the reductions in 
precipitation due to forest loss observed here.
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Methods

Datasets
We used 18 precipitation datasets, listed in Extended Data Table 1. All 
datasets were downloaded at the highest available spatial resolution, 
which for some datasets was 0.04°, or approximately 4 km at the Equa-
tor. Data were obtained as monthly means or converted to monthly 
mean using the Python package xarray52. We categorized precipitation 
datasets as satellite (n = 10), station (n = 4) and reanalysis (n = 4). Satel-
lite datasets are those based primarily on data from satellite sensors 
and include datasets that have both satellite and station-based data 
(that is, merged datasets). Station datasets include only ground-based 
information from weather stations and rain gauges. Reanalysis prod-
ucts are models constrained by surface and satellite data. Precipitation 
datasets have been compared previously over the Amazon20 highlight-
ing the limited station data over tropical forest regions. Time series of 
precipitation (Supplementary Fig. 1) reveal variability across the differ-
ent datasets highlighting the need to analyse impacts of deforestation 
across multiple datasets.

To analyse the changes in forest canopy cover, we used data from 
the Global Forest Change (GFC) version 1.9 (ref. 10). GFC v1.9 provides 
forest canopy cover in the year 2000 and subsequent annual forest 
loss from 2001–2020 at 30-m resolution. We analysed forest cover 
and precipitation changes over the period 2003 to 2017, which was 
the period common to all datasets.

Analysis across multiple spatial scales
We analysed the impacts of forest loss across a range of scales (0.05°, 
0.1°, 0.25°, 0.5°, 1.0° and 2.0°). Each precipitation dataset was ana-
lysed at its native resolution and at all lower resolutions across this 
range of scales. Spatial regridding was carried out using the Python 
package xESMF53 with a bilinear regridding scheme. Two alternative 
regridding methods (xESMF: conservative-normalized; and iris: area 
weighted) were tested and had little impact on our results. For GFC data, 
we calculated forest loss using the original 30-m data and converted 
the resulting values to each of the six spatial resolutions analysed by 
taking the sum of all 30-m pixels within each larger pixel. Change in 
canopy cover from 2003 to 2017 at each resolution is shown in Fig. 1.

Assessing impact of historical deforestation on precipitation
We used a moving-window nearest-neighbour approach54 to compare 
the forest loss and precipitation change of each pixel with that of its 
immediate neighbours. We tested the sensitivity of the analysis to 
the size of the moving window and found similar results for 3 × 3 and 
5 × 5 (Extended Data Fig. 2) moving windows. Results from the 3 × 3 
moving-window approach can been seen in the main paper. We calcu-
lated the forest loss of each deforested pixel relative to neighbouring 
control pixels as the forest loss of the deforested pixel minus forest loss 
of the control. We constrained our analysis to the tropical evergreen 
broadleaf biome using the Moderate Resolution Imaging Spectroradi-
ometer land cover dataset55. To be included in the analysis, deforested 
pixels must have experienced 0.1% more forest loss over time than their 
neighbouring control pixels. The number of deforested pixels analysed 
varied between analysis resolutions as follows: 0.05°, n = 243,254; 0.1°, 
n = 58,660; 0.25°, n = 9,604; 0.5°, n = 2,303; 1.0°, n = 586; 2.0°, n = 123. 
We observed similar distributions of canopy change for all spatial reso-
lutions analysed (Supplementary Fig. 6).

We calculated the precipitation change of the deforested pixel 
relative to the precipitation change of the control pixel (ΔP) as the 
precipitation change of the deforested pixel over the analysis period 
(for example, 2003–2017) minus the precipitation change over the 
control pixel. To reduce the impact of interannual variability in pre-
cipitation on our results, we calculated 5-yr means for periods at 
the start (2003–2007) and end (2013–2017; Extended Data Fig. 5) of  
the analysis period. We then calculated the change in precipitation as 

the difference between the start and end of these multi-year means. We 
report precipitation changes (ΔP) as a function of forest loss by divid-
ing by the difference in forest loss between deforestation and control 
pixels (units of millimetres per month per percentage point). We also 
report precipitation change as the percentage change in precipitation 
(ΔP/P, in units of per cent) as a function of forest loss (in units of per 
cent per percentage point).

To ensure that control pixels and deforested pixels experience a 
similar background climate, we conducted a sensitivity test in which 
we restricted our analysis to pixels for which the pre-deforestation 
precipitation across the control and deforested pixels differed by less 
than 10%. Restricting our analysis in this way had little impact on our 
results (Supplementary Fig. 7) showing that our nearest-neighbour 
approach is effective even at the largest scales analysed here.

To explore the role of the analysis period on our results, we compared 
the results for 5-yr means to those for shorter 3-yr means (2003–2005 
versus 2015–2017) and found consistent results (Extended Data Fig. 3). 
Our analysis period includes the strong 2015/2016 El Niño that resulted 
in reductions in precipitation over most tropical land regions, particu-
larly in 2015 (Supplementary Fig. 1). To explore the potential impacts 
of the 2015/2016 El Niño on our analysis, we estimated the impact of 
forest loss on precipitation using 3-yr (2003–2005 versus 2018–2020) 
and 5-yr (2003–2007 versus 2016–2020) multi-annual means spanning 
an extended time period. The 3-yr analysis completely excludes the 
2015/2016 ENSO, and the 5-yr analysis excludes 2015, which was the  
driest year (Extended Data Fig. 3). Two datasets (TRMM and UDEL) 
were not available after 2017, so they were removed from this sensiti
vity analysis.

Statistical analysis
For each category of precipitation data (satellite, station and rea-
nalysis), precipitation change values were grouped together for all 
deforestation pixels and all control pixels. We found that precipita-
tion changes for deforested pixels and control pixels, and the differ-
ence in precipitation change between deforested and control pixels 
(Extended Data Fig. 4), were normally distributed. Error bars (Figs. 2 
and 3) show ±1 standard error from the mean calculated and displayed 
using the Python package Seaborn56. To test whether mean precipita-
tion changes over regions of deforestation were statistically different 
from changes over the control areas, we used a Student’s t-test. We 
also used the Mann–Whitney test to test for significant differences in 
median precipitation change between control and deforested pixels 
and found similar results.

Seasonal analysis
For the satellite datasets alone, in addition to calculating precipitation 
changes at the annual timescale, we calculated changes for the dry 
season (driest 3 months of each year), wet season (wettest 3 months 
of each year) and transition season (remaining 6 months). The driest, 
wettest and transition months were identified for each pixel using 
each individual precipitation dataset. For each season and dataset, we 
calculated the median change in precipitation across all of the pixels 
within the region of interest (Supplementary Figs. 8–10).

Predicting future precipitation change due to forest loss
We used projections of forest cover change available at 0.05° from 
the Global Change Analysis Model (GCAM) for 2015–2100 based on 
the Shared Socioeconomic Pathway 3–Representative Concentration 
Pathway 4.5 scenario, which represents a high-deforestation future57. 
GCAM includes the impacts of climate and land use on future forest 
cover. We summed forest cover from all forest categories and calcu-
lated forest cover loss in each year compared to a 2015 baseline. For-
est cover loss data were regridded to 2°. We estimated the impact of 
forest loss on future precipitation at the 2° scale through multiply-
ing the projected percentage point forest loss for each pixel by the 



observed median change in precipitation (millimetres per month) 
per percentage point forest cover loss across the satellite datasets. To 
estimate the uncertainty in our predictions, we applied an upper and 
lower limit on the sensitivity of precipitation to forest loss based on 
the median value ±1 standard error from the mean (see error bars in 
Fig. 2) and rescaled by forest loss. This provides a range of estimated 
precipitation impacts of future forest loss. We also tested the impact 
on our results of capping future forest loss in each pixel at 30%, which 
is the upper range of forest loss that is well sampled in the observa-
tions (Supplementary Fig. 3). For each region, we applied the tropical 
satellite precipitation response to forest loss (Fig. 2f), meaning that our 
projected regional precipitation changes are a product of the regional 
canopy cover change and the median tropical precipitation response. 
Our approach assumes a linear precipitation response to forest loss, 
which recent work suggests could provide a conservative estimate of 
deforestation impacts31. We tested the sensitivity of assuming a linear 
response of precipitation to canopy cover loss. We fitted a nonlinear 
function to the data presented in Extended Data Fig. 1 through applying 
the median sensitivity of precipitation to forest cover loss (millimetres 
per month per percentage point) within each forest cover loss bin. We 
then scaled by the projected forest cover loss. This approach reduces 
the projected reduction in precipitation to 2.4 mm per month in SEA 
and 1.5 mm per month in the Congo (Supplementary Fig. 5).

Data availability
Full results for all tested resolutions used in this analysis are avail-
able through https://doi.org/10.5281/zenodo.7373832. The original 
datasets are freely available to download from the following reposi-
tories: CHIRPS from https://data.chc.ucsb.edu/products/?C=M;O=D, 
CMORPH from https://ftp.cpc.ncep.noaa.gov/precip/CMORPH_RT/
GLOBE/data/, CPC from https://psl.noaa.gov/data/gridded/data.
cpc.globalprecip.html, CRU from https://crudata.uea.ac.uk/ 
cru/data/hrg/, ERA5 from https://cds.climate.copernicus.eu/cdsapp#!/ 
dataset/reanalysis-era5-single-levels?tab=overview, GPCC from https://
opendata.dwd.de/climate_environment/GPCC/html/download_gate. 
html, GPCP from https://disc.gsfc.nasa.gov/datasets/GPCPMON_3.1/
summary?keywords=GPCPMON, GPM from https://gpm1.gesdisc.
eosdis.nasa.gov/data/GPM_L3/, JRA from https://climatedatagu-
ide.ucar.edu/climate-data/jra-55 and https://jra.kishou.go.jp/
JRA-55/index_en.html, MERRA-2 from https://disc.gsfc.nasa.gov/
datasets?project=MERRA-2, NOAA (PREC/LAND) from https://psl.noaa.
gov/data/gridded/data.precl.html, PERSIANN (CCS, CDR, CCS-CDR, 
PDIR-NOW) from https://chrsdata.eng.uci.edu/, TRMM from https://
disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary, UDEL from 
https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html. The 
GCAM model output used in this study is available from https://doi.
org/10.25584/data.2020-07.1357/1644253. Source data are provided 
with this paper.

Code availability
The code used in this analysis is available through https://doi.org/ 
10.5281/zenodo.7373832.
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Extended Data Fig. 1 | Annual precipitation change as a function of forest 
loss. Results are shown at 2° spatial resolution for all satellite precipitation  
(P) datasets calculated as the change in P over time for deforested data pixels 
minus change over time for control data pixels. Data is binned according to 

forest cover change (%) with an equal number of pixels in each bin. Points show 
the median and error bars show ± 1 standard error from the mean. Details of 
each data product are provided in Extended Data Table 1.



Extended Data Fig. 2 | Annual precipitation change due to forest loss for 
individual datasets. Results are shown for 2003 – 2017 for 5 year averages  
and 3x3 moving window. Bars show the median absolute change in annual  
P (mm month−1) per percentage point tree cover loss in each region (Tropics (a-f), 
Amazon (g-l), Congo (m-r), SEA (s-x)). Each P dataset is shown separately and 
ordered and coloured by category: satellite (orange), station (yellow) and 

reanalysis (turquoise). The datasets are numbered; 1) CHIRPS, 2) CMORPH, 3) 
CPC, 4) CRU, 5) ERA5, 6) GPCC, 7) GPCP, 8) GPM, 9) JRA, 10) MERRA-2, 11) NOAA 
12) PERSIANN-CCS, 13) PERSIANN-CCSCDR, 14) PERSIANN-CDR, 15) PERSIANN- 
NOW, 16) PERSIANN, 17) TRMM, 18) UDEL. Results are shown for forest loss 
scales of 0.05° (a,g,m,s), 0.1° (b,h,n,t), 0.25° (c,i,o,u), 0.5° (d,j,p,v), 1.0° (e,k,q,w), 
2.0° (f,l,r,x). Details of each data product are provided in Extended Data Table 1.
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Extended Data Fig. 3 | Changes in precipitation due to forest loss for 
different time periods and nearest neighbour comparisons. Changes in 
annual mean precipitation at 2.0° resolution are shown for satellite (orange), 
station (yellow) and reanalysis (turquoise) datasets for the tropics (a-f), 
Amazon (g-l), Congo (m-r) and Southeast Asia (SEA, s-x). Columns show the 
sensitivity of our results to changes in the analysis period, number of years 
used to compute multi-annual means at start and end of the analysis period, 
and size of the moving window used for nearest neighbour comparisons:  

2003-2017, 3-year averages and 3x3 nearest neighbour (Column 1, a,g,m,s); 
2003-2017, 3-year, 5x5 (Column 2; b,g,n,t); 2003-2017, 5-year, 3x3 (Column 3; 
c,i,o,u); 2003-2017, 5-year, 5x5 (Column 4; d,j,p,v); 2003-2020, 3-year, 3x3 
(Column 5; e,k,q,w); 2003-2020, 5-year, 3x3 (Column 6; f,l,r,x). Error bars  
show ± 1 standard error from the mean. Details of each data product are 
provided in Extended Data Table 1. Full results for all tested resolutions are 
available in an online repository [10.5281/zenodo.7373832].



Extended Data Fig. 4 | Change in precipitation over deforested, control and 
difference between deforested and control pixels. Change in precipitation 
over 2003 to 2017 is shown for deforested (a, b), control (c, d) and difference 

between deforested and control pixels (e, f) for 0.05° (a, c, e) and 2.0° (b, d, f) 
resolution. Details of each data product are provided in Extended Data Table 1.
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Extended Data Fig. 5 | Mean precipitation from satellite, station and 
reanalysis datasets. For each class of dataset, satellite (a, d, g), station (b, e, h) 
and reanalysis (c, f, i), the median value for the 5-year multi-annual mean at the 
start (2003-2007; a, b, c) and end (2013-2017; d, e, f) of the analysis period as 
well as the change over the analysis period (end – start; g, h, i) is shown. Mean 

values across tropical evergreen broadleaf forests are shown in units of mm/
month at the top of each panel. Maps of the different regions generated using 
Cartopy and Natural Earth51. Details of each data product are provided in 
Extended Data Table 1.



Extended Data Table 1 | Precipitation datasets used in this study refs 58–73
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