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Warming temperatures lead to reduced summer
carbon sequestration in the U.S. Corn Belt
Zhongjie Yu 1,3✉, Timothy J. Griffis 1✉ & John M. Baker1,2

The response of highly productive croplands at northern mid-latitudes to climate change is a

primary source of uncertainty in the global carbon cycle, and a concern for future food

production. We present a decadal time series (2007 to 2019) of hourly CO2 concentration

measured at a very tall tower in the United States Corn Belt. Analyses of this record, with

other long-term data in the region, reveal that warming has had a positive impact on net CO2

uptake during the early crop growth stage, but has reduced net CO2 uptake in both croplands

and natural ecosystems during the peak growing season. Future increase in summer tem-

perature is projected to reduce annual CO2 sequestration in the Corn Belt by 10–20%. These

findings highlight the dynamic control of warming on cropland CO2 exchange and crop yields

and challenge the paradigm that warming will continue to favor CO2 sequestration in

northern mid-latitude ecosystems.
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Atmospheric carbon dioxide (CO2) contributes to climate
change through its impact on the Earth’s radiation bud-
get1. Atmospheric CO2 concentration has increased at an

unprecedented rate from 280 ppm at the start of the industrial
revolution to over 400 ppm in recent years, arising primarily from
the burning of fossil fuels2. Not all CO2 emitted from anthro-
pogenic sources remains in the atmosphere; about one-fourth of
the emissions are currently absorbed by the terrestrial biosphere3,
which has significantly slowed down global warming4. Unlike the
anthropogenic emissions, the terrestrial carbon (C) sink is driven
by two large opposing ecosystem fluxes, i.e., photosynthesis and
respiration, and is often indirectly estimated from the residuals of
global C budgets. This results in large uncertainties regarding the
magnitude and distribution of this terrestrial C sink across spatial
and temporal scales5.

While it is challenging to precisely quantify the terrestrial C
sink strength, trends and variations in atmospheric CO2 con-
centration provide a unique lens through which to probe the
dynamics of the terrestrial C cycle as well as its interactions with
climate. There is wide recognition that the amplitude of the
seasonal oscillation of atmospheric CO2 (i.e., annual peak-to-
trough difference in atmospheric CO2 concentration) in the
northern hemisphere has increased by ~50% since the 1960s,
tracking the pace of the contemporary climate warming6,7. A
feature of this increase in the CO2 seasonal amplitude is a pro-
gressively earlier and larger drawdown of atmospheric CO2

concentration in northern spring and summer, indicating
warming-driven lengthening and intensification of photo-
synthetic activity in northern terrestrial ecosystems5,8, in line with
a widespread “greening” trend during the early 1980s to late
1990s9,10. While this positive warming impact on terrestrial C
uptake can be traced back to the 1980s, there is emerging evi-
dence that the interannual correlations between growing season
temperatures and CO2 drawdown anomalies have been sub-
stantially attenuated or even reversed in direction at Mauna Loa11

and northern high latitudes12–14 in recent decades. Although the
underlying causal mechanisms remain unclear, these changing
relationships appear to signal an emergent shift in both phase and
magnitude of the terrestrial C sink and underscore a pressing
need to better understand how C exchange dynamics is
responding to ongoing climate change across a diverse range of
northern terrestrial ecosystems15.

Though much research has focused on the C source and sink
activities of tropical and boreal forest ecosystems, less attention
has been paid to the role of terrestrial ecosystems at northern
temperate latitudes (30° to 50° N) in the context of the global CO2

seasonal cycle16. Previous studies showed that recent warming
has resulted in altered phenology and increased net primary
productivity (NPP) in spring and autumn in temperate forest
ecosystems, suggesting a current and possible future enhance-
ment of C sequestration in these ecosystems17,18. Importantly, at
northern mid-latitudes, terrestrial ecosystems are spatially het-
erogeneous and include a substantial area of croplands19. We
know from a network of ecosystem-scale CO2 exchange
measurements20,21 and satellite observations22 that densely
vegetated croplands have shorter but more intense C uptake
periods than natural ecosystems and are one of the most pro-
ductive systems on planet earth. Based on top-down and bottom-
up models, Gray et al.23 and Zeng et al.24 argued that the
intensification of agriculture at northern temperate latitudes was
a major, yet largely overlooked, driver of changes in the CO2

seasonal cycle of the northern hemisphere during the past five
decades, accounting for 17–45% of the enhanced C exchange
needed to explain the increasing CO2 seasonal amplitude. Corn
alone constitutes about two-thirds of this agricultural forcing,
owing mostly to increasingly concentrated corn production in the

Midwestern United States (i.e., the U.S. Corn Belt) and northern
China23,24. However, due to the scarcity and limited time period
of direct observations, considerable uncertainties remain with
respect to the overall strength of this agricultural forcing and the
extent to which heterogeneous terrestrial ecosystems at northern
mid-latitudes will respond to future climate warming11.

Here we present a decadal record (2007–2019) of direct
boundary layer CO2 measurements from a very tall tower in
southern Minnesota (the University of Minnesota tall tower Trace
Gas Observatory (KCMP)) (Fig. S1a) – a heterogeneous agri-
cultural region that typifies the Corn Belt25–27. We compared this
decadal record with other long-term time series (2007–2018) of
atmospheric CO2 data within the U.S. Midwest (i.e., Park Falls,
Wisconsin (LEF) and West Branch, Iowa (WBI) from NOAA’s
Global Greenhouse Gas Reference Network)28 to examine the
imprint of crop production on the regional CO2 seasonal cycle.
Through a statistical examination of these long-term CO2

records, together with inversion products of net ecosystem
exchange (NEE; CarbonTracker 2019)29, we quantified the sen-
sitivity of net CO2 exchange to interannual temperature varia-
tions and attribute this sensitivity to CO2 exchange dynamics of
croplands and natural ecosystems, respectively. The quantified
sensitivity was then used to evaluate how the CO2 seasonal cycle
and net CO2 uptake in the Corn Belt will respond to future
climate warming by year 2050.

Results and discussion
Agricultural imprint on the CO2 seasonal cycle. The decadal
CO2 records measured at KCMP, LEF, and WBI were de-spiked,
gap-filled, and digitally filtered to extract the long-term CO2

growth rate and the detrended CO2 seasonal cycle (Fig. S1) (see
Methods). To probe the link between the CO2 seasonal cycle
characteristics and crop production within the region, we defined
a cropland fraction (fCS), calculated as the ratio of land area of
corn and soybean to total area of land ecosystems (i.e., croplands
plus natural ecosystems) (see Methods). Over 2008 to 2018, fCS
was 0.43 ± 0.01 (1 σ), 0.12 ± 0.01, 0.56 ± 0.01 within the intense
concentration footprints (i.e., 300 km radius to each tower; see
Methods) of KCMP, LEF, and WBI, respectively (Figs. S2 and S3),
forming a unique gradient for examining the regional impact of
corn and soybean on the CO2 seasonal cycle. In addition, we take
advantage of the heterogeneous land use within the intense con-
centration footprint of KCMP (Fig. S2) by sampling the hourly
CO2 concentrations based on wind direction. Two monthly CO2

datasets were built using the northwesterly CO2 observations (i.e.,
270°–360°; hereafter, KCMPNW) and the southern and south-
eastern sector observations (i.e., 120°–210°; hereafter, KCMPSSE)
along the dominant wind directions (Fig. 1; see Methods). Nota-
bly, the south and southeast sector had a significantly higher fCS
(0.52 ± 0.01) compared to the northwest sector (0.23 ± 0.01).

The long-term growth rate of CO2 (2.12–2.37 ppm yr−1) was
similar across the three tall tower sites and between the three sites
and a continental background site without significant agricultural
influences (2.26 ppm yr−1; Niwot Ridge, Colorado; see Methods)
(Fig. S1). The detrended CO2 seasonal cycle at all three sites
reached annual minimum values in late July/early August after a
period of rapid CO2 drawdown and then increased gradually until
December (Fig. 2b). Compared to NWR, all three sites had earlier
and larger CO2 drawdowns and more elevated CO2 concentra-
tions during the dormant season (October–April next year)
(Fig. 2b), indicating vigorous C source and sink activities within
this highly productive region. Among the three tower sites, WBI
had the largest average annual CO2 drawdown (−19 ppm),
followed by KCMP (−18 ppm), and LEF (−15 ppm) (Fig. 2e).
Correspondingly, the average CO2 seasonal amplitude was largest
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Fig. 1 CO2 concentration measured at KCMP. a Hourly CO2 concentration measurements made from 2008 to 2018. b Wind rose showing distributions of
wind direction and speed during 2010 to 2018. c Enhancement of CO2 concentration relative to the northwestern sector (270°–360°) when wind speed
was greater than 3 m s−1.

Fig. 2 The annual CO2 exchange metrics at the three tall tower sites. The detrended CO2 seasonal cycle (a, b) and the CarbonTracker NEE (c) averaged
over the entire observation period. The CO2 seasonal amplitude (d, e) and the NEE amplitude f at the three tall tower sites. Trends in the annual CO2

exchange metrics were estimated using the nonparametric Theil–Sen estimator and shown in the legend. Statistically significant trends (the Mann-Kendall
trend test; P < 0.1) are indicated by an asterisk symbol in the legend.
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at WBI (28.1 ppm), followed by KCMP (27.9 ppm) and LEF (23.9
ppm) (Fig. 2e). These spatial gradients are in concordance with
the large differences in fCS and the growing season
(May–September) NEE among the three sites (Fig. 2c). The
strong sensitivity of the CO2 seasonal cycle to corn and soybean
production is also highlighted by the larger CO2 drawdown and
seasonal amplitude of KCMPSSE compared to KCMPNW (Fig. 2a,
d). To further examine the convolution between atmospheric
transport, land use, and the CO2 seasonal cycle, we subtracted the
northwestern sector (270°–360°) measurements binned by month
from the monthly mean of the CO2 concentration in 12 evenly
spaced directional sectors around KCMP. From this wind sector
analysis, a clear depletion of CO2 is evident in the peak growing
season (i.e., July and August) when winds were coming from the
heart of the Corn Belt (i.e., south and southeast) (Fig. 1c).
Collectively, these results underscore a large spatial gradient in
the atmospheric CO2 concentrations within the study domain
and corroborate the strong imprint of crops on regional CO2

uptake26,30.
Over the 11-year analysis, total production and yields of corn and

soybean increased significantly (the Mann-Kendall test; P < 0.1)
within the intense concentration footprints of KCMP and WBI
(Fig. S5). The increasing yield trends are consistent with the
continued growth in crop productivity over the entire Corn Belt
and can be attributed to several possible mechanisms related to
advances in breeding and genetic technology (e.g., longer maturity
cultivars that can adapt to higher sowing density), agronomic
practices (e.g., improved herbicide and weed management), and
favorable growing conditions (e.g., enhanced water use efficiency
under rising atmospheric CO2)31. Over the study period, the CO2

seasonal amplitude increased at a rate of 0.18 ppm yr−1 (the
nonparametric Theil–Sen estimator) and 0.39 ppm yr−1 at KCMP
and WBI, respectively (Fig. 2c), although the trends are not
statistically significant (the Mann-Kendall test; P= 0.12 for KCMP
and P= 0.14 for WBI). In contrast, the CO2 seasonal amplitude
observed at LEF exhibited much smaller interannual variability than
those at KCMP and WBI (Fig. 2e), and a significant increasing
trend of the CO2 seasonal amplitude (0.19 ppm yr−1; P < 0.1) was
evident (Fig. 2e). To compare with the seasonal amplitude of CO2,
we have also calculated the annual amplitude of NEE using the NEE
inversion products within the intense concentration footprints of
the three tall tower sites (see Methods). While the mean magnitude
of the annual NEE amplitude varied across the three sites,
consistent with the CO2 seasonal amplitude, significant trend was
absent at any site (Fig. 2f). To further examine causal relationships
between crop yields and the CO2 exchange dynamics, a correlation
analysis (Pearson correlation coefficient) was applied after a linear
detrending of all the variables. No significant correlation (P > 0.1)
was detected between crop yield anomalies and the CO2

concentration- or NEE-based annual metrics at any of the
three sites.

Therefore, although the agriculture intensification at northern
mid-latitudes is believed to be an important driver of the
increasing CO2 seasonal amplitude in the northern hemisphere
across the decadal to multi-decadal scales23,24, our results, based
on direct observations over an intensively agricultural region,
suggest a decoupling between crop yields and CO2 exchange
intensity at the interannual scale. Because the CO2 seasonal
amplitude is an integrated measure of annual CO2 exchange, this
decoupling may be due to compensating responses of photo-
synthesis and ecosystem respiration to variations in climatic
forcings at sub-annual scales5. Moreover, the large differences in
magnitude and seasonal dynamics between KCMPNW and
KCMPSSE (Fig. 1) imply that changes in atmospheric transport
and circulation may have also played a role in weakening the
interannual association between crop yields and atmospheric

CO2
11,16. On the other hand, although grain yield constitutes a

large fraction of crop NPP, the extent to which assimilated C in
crops is partitioned to grain depends on whether and when the
temperature threshold has been exceeded31,32, implying an
intricate climate modulation on the yield–CO2 relationship.
Notably, the past decade exhibited numerous extreme tempera-
ture and precipitation variations in the U.S. Midwest. The long-
lasting and pervasive heat wave and drought in the spring and
summer of 2012 damaged a substantial proportion of crop
commodities33 and adversely affected the functionality of natural
ecosystems in this region34; notwithstanding, four of the wettest
years in the last 100 years (ranks 1–4) were also recorded in the
past decade35. These large interannual climate variations provide
a natural experiment to observe the behavior of terrestrial
ecosystems under anomalous climate conditions, making it
possible to unravel the dynamic link among climate, crop
production, and CO2 exchange at scales finer than the
annual scale.

Temperature sensitivity of the CO2 exchange anomalies. To
examine how changes in the CO2 seasonal cycle were linked to
temperature variations at the monthly scale, we calculated the
first-time derivative of the CO2 time series, ΔCO2 (Fig. S6), which
has been demonstrated to be a better proxy of net land-
atmosphere CO2 fluxes than the original CO2 seasonal cycle at
northern latitudes36. The sensitivity of ΔCO2 (or NEE) anomaly
to temperature variations (βT) within the intense concentration
footprint of each tall tower site was then estimated as the slope of
the regression on temperature in a multiple linear regression
(MLR) of ΔCO2 (or NEE) against temperature, water availability
(i.e., 3-month cumulative precipitation including the current
month; see Methods), and radiation (all variables detrended).
Climate variations explained 14–65% and 19–81% of variances in
the ΔCO2 and NEE anomalies of individual months, respectively
(Fig. S7 and S8). The climate anomalies explained a much larger
fraction (i.e., >60%) of ΔCO2 and NEE variances in the growing
season months than in the dormant season (Figs. S7 and S8),
signifying the important role of climate–vegetation interactions in
controlling the regional CO2 exchange variability.

There were pronounced seasonal patterns in βT of ΔCO2 and
NEE at all three tall tower sites (Fig. 3; Supplementary Data 1 and 2).
Notably, βT of both ΔCO2 and NEE were significantly positive (i.e.,
an increase in monthly mean temperature leads to reduced net CO2

uptake) in July and August, whereas only βT of NEE was
significantly negative in June at KCMP and WBI (Fig. 3). A
correlation analysis (Pearson correlation coefficient) between the
monthly ΔCO2 and NEE anomalies shows that the ΔCO2 and NEE
anomalies were significantly (P < 0.05) and positively correlated in
summer (July and August) and early spring (April and/or May) at
all three sites, whereas no significant correlation emerged in June at
any of the sites (Fig. S9). Because the NEE inversion products were
derived taking into account atmospheric transport and circulation,
the absence of significant correlation between ΔCO2 and NEE in
June suggests an important role of air mass transport and mixing in
determining the temperature–ΔCO2 relationship at the regional
scale37. Despite large interannual variations in dormant season air
temperature (data not shown), βT of ΔCO2 and NEE were mostly
small and not significantly different from zero in the dormant
season months (Fig. 3). It is noteworthy that incorporating
uncertainties in defining the concentration footprints did not
qualitatively change the estimated βT of ΔCO2 and NEE at any of
the three tall tower sites (see Methods; Figs. S10 and S11).

A panel data model that combines the climate and NEE
anomalies of the three tall tower sites was used to derive βT of
NEE specific to croplands (i.e., corn and soybean) and natural
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terrestrial ecosystems (see Methods). This approach leverages the
contrasting fCS across the three sites and assumes that the
differences in climate sensitivities between croplands and natural
ecosystems were coherent within the domain of the three tower
sites (see Supplementary Discussion for an extended discussion).
The estimated biome-specific βT can therefore be viewed as an
area- and CO2 flux-weighted net temperature sensitivity that

encompasses the entire range of ecosystem processes by which
temperature impacts ecosystem CO2 exchange within each biome
category. The estimated biome-specific βT illuminates the
dominant role of croplands in driving the negative βT of NEE
in June, while NEE of both croplands and natural ecosystems
responded positively to temperature variations in July and August
(Fig. 4; Table S1). These results are robust for a range of tower
footprint radii (150–450 km) used in the panel analysis (Fig. S13)
and are not sensitive to changes in the definition of the two biome
categories (Fig. S14).

The negative temperature impact on cropland NEE in June (i.e.,
higher temperature favors enhanced CO2 uptake) is consistent with
the rapid phenological development of corn and soybean during
this critical transition period when cumulative thermal energy
typically meets the threshold of crop leaf emergence in the Corn
Belt (Fig. S15a)38. Field evidence shows that during this early
vegetative stage, the positive feedback between crop canopy
development and photosynthetic capacity amplifies the response
of crop photosynthesis to temperature variations, leading to
accelerated crop growth under warmer temperatures32,39. Further-
more, the negative βT in June might have been an indirect result of
human responses to spring climate variations40. In the Corn Belt,
the timing of crop planting is largely determined by temperature
and precipitation in early spring41. Earlier crop planting in years
with warm and dry springs can therefore hasten crop growth in
early to mid-spring, giving rise to a stronger photosynthetic
response to temperature in late spring to early summer. Indeed,
there was a significant linear relationship between the anomaly of
June NEE and anomaly of simulated corn leaf emergence date
(CLED) within the intense concentration footprints of KCMP and
WBI (Fig. S15b; see Methods). This positive correlation remains
robust at both sites after removing the control of June temperature

Fig. 3 Temperature sensitivity of ΔCO2 and NEE within the intense concentration footprints (300 km radius) of KCMP, LEF, and WBI. Panels a and
b, c and d, and e and f are for KCMP, LEF, and WBI, respectively. Gray shaded area denotes the 90% confidence interval of estimated sensitivity derived
through resampling. Sensitivities significant at the 90% confidence level are denoted by solid squares.

Fig. 4 Biome-specific temperature sensitivity of NEE for croplands and
natural ecosystems. Panels a and b are for croplands and natural
ecosystems, respectively. Gray shaded area denotes the 90% confidence
interval of estimated sensitivity derived through resampling. Sensitivities
significant at the 90% confidence level are denoted by solid squares.
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variations (Partial correlation analysis; P < 0.1), underpinning a
crop phenology-mediated legacy effect of early spring temperature
variations on CO2 uptake in June. On the other hand, in contrast to
previous studies in temperate deciduous and evergreen forests17,18,
natural ecosystems within the study domain did not show a strong
response to temperature variations during spring to early summer
(Fig. 4b). Importantly, with the tower footprints on the order of
several hundreds of kilometers (Fig. S4), the derived βT inherently
represents a net sensitivity across a diversity of ecosystem types
(e.g., grasslands, forests, and wetlands). As a result, the lack of
coherent temperature response likely reflects asynchronous
temperature–phenology regimes among different natural ecosys-
tems that compensates temperature-driven NEE anomalies with
increasing levels of spatial aggregation42,43.

While most previous long-term C cycle studies in northern
ecosystems have concentrated on the temperature–phenology–CO2

interactions in spring and autumn12,18, less attention has been given
to the interannual relationship between temperature and CO2

anomalies at the height of the growing season14. Our analyses,
based on either ΔCO2 or NEE anomalies, unequivocally identified
positive βT of net CO2 exchange (i.e., higher temperature reduces
net CO2 uptake) in both croplands and natural ecosystems during
the peak growing season (Figs. 3 and 4), where temperature is
highest within a year and plants reach their peak photosynthetic
capacity in this region38,42. High temperatures affect NEE of crop
and natural ecosystems through a variety of direct and indirect
pathways. At the ecosystem scale, a well-accepted conceptual model
is that photosynthesis responds to temperature variations following
a quadratic function, defined by a maximum photosynthetic rate at
optimal temperature44, whereas ecosystem respiration increases
with temperature through stimulated metabolic rates in an
exponential fashion45. Therefore, a positive summer βT can be an
indicator of ecosystems operating beyond their thermal optima of
photosynthesis. In addition, high temperatures can also suppress
photosynthesis and ecosystem productivity by imposing water stress
on plants46,47. High summer temperatures not only limit soil water
supply by sustained evapotranspiration but also increase atmo-
spheric water demand by increasing the vapor pressure deficit
(VPD) of the atmosphere. In response to increased VPD coupled
with limited soil moisture, plants close their stomata to prevent
excessive water loss, at the cost of reduced CO2 uptake48,49.
Importantly, this temperature-induced negative impact on plant
CO2 uptake is exacerbated by insufficient summer precipitation,
resulting in heat and drought stresses on ecosystem productivity50.

To gain insight into the importance of this potential interaction
between temperature and water availability (i.e., 3-month cumula-
tive precipitation including the current month) in driving the
summer CO2 exchange anomalies, we estimated the summer
temperature sensitivity under different water availability conditions.
Specifically, we transformed the climate variables and CO2

exchange of July and August to z-score anomalies using their
monthly means and standard deviations, pooled the z-score
anomalies of the three tower sites, and grouped this combined
dataset into four bins: dry (z-score less than −1), moderate dry (z-
score between −1 and 0), moderate wet (z-score between 0 and 1),
and wet (z-score greater than 1) summers. An MLR was then
applied to estimate βT for each bin. As shown in Fig. 5, βT of ΔCO2

and NEE were significantly greater in dry summers than in other
bins of summer water availability, indicating that dry conditions
indeed increased summer βT by imposing plant water stress that
can also lead to lowered temperature optimum for
photosynthesis44,50. However, even in summers with above average
water availability (i.e., moderate wet and wet summers), βT of ΔCO2

and NEE were significantly positive (Fig. 5), suggesting that both
croplands and natural ecosystems have adapted to current summer
temperature and were operating at their thermal optima of CO2

uptake. Thus, high summer temperatures caused reduced net CO2

uptake in this mesic, seasonally cold region both during drought
and modestly dry periods that regularly occur in the peak growing
season51.

The finding that the summer CO2 uptake of croplands has
already reached its thermal optimum implies a strong temperature
control on crop production in the Corn Belt. In light of the revealed
βT of ΔCO2 and NEE, we used a panel data model with mean
spring temperature (i.e., May and June), summer temperature (i.e.,
July and August), and growing season precipitation as the
explanatory variables to probe the linkage between climate and
crop yield variations within the footprints of KCMP and WBI (see
Methods). The model results show that temperature and precipita-
tion variations together with an increasing yield trend explain about
80% of variances in corn yields at the two sites (Fig. S16a, S16b;
Table S2) and that higher summer temperature reduced corn yield
at a rate of −0.36 t ha−1 °C−1 (90% CI: −0.54 to −0.19 t ha−1 °C−1

with a base summer temperature of 23 °C), or about 3.0% °C−1, in
strong agreement with previous findings (e.g., 2.5% reduction for
every 0.8° rise above 23°)52. Evidence from agronomic research
shows that July and August correspond to the critical reproductive
stage of corn (i.e., grain filling) in the Corn Belt and that
temperature stress during this stage of corn growth contributes
directly to yield reduction by shortening the grain filling period and
reducing the translocation of photosynthate into reproductive
biomass (i.e., lower harvest index)31. On the other hand, although
higher spring temperature has favored net CO2 uptake (Fig. 4a) and
thus vegetative development of corn, the effect of spring
temperature on the final corn yield was not significant (Table S2).
This finding is in line with results from recent heating experiments
conducted in the central Corn Belt that warmer leaf temperatures
during the vegetative stage do not exert lasting effects on corn
reproductive growth, possibly due to the high optimal temperature
of photosynthesis relative to the background spring temperature
during this period32,53.

Interestingly, while growing season precipitation had a
significant positive impact on soybean yields within the
footprints of KCMP and WBI, neither spring nor summer
temperature was significantly correlated with soybean yield
variations over the 11-year analysis (Fig. S16c, S16d; Table S3).
The lack of significant temperature effect on soybean yields has
been previously reported by Lobell et al.46 using historical
(1995–2012) soybean yield records in the central Corn Belt.
Given that atmospheric CO2 concentrations increased by ~30
ppm over the 11-year span at KCMP and WBI, temperature
effects of soybean yields may have been confounded by the

Fig. 5 Temperature sensitivity of ΔCO2 and NEE for different bins of
summer water availability. Error bar denotes the 90% confidence interval
of estimated sensitivity derived through resampling (i.e., deemed significant
at the 90% confidence level if the error bar does not contain zero). Sample
size for each bin is also shown.
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CO2 fertilization effect, which has been shown to alleviate
temperature stress on soybean reproductive development by
enhancing soybean water-use efficiency and photosynthesis54,
but have no significant impact on corn yields53. These results
imply a dominant control of corn in mediating the link
between temperature variations and cropland CO2 exchange
within the study domain. Indeed, there was a significantly
negative relationship between the detrended corn yield
anomaly and the anomaly of July NEE within the intense
footprints of KCMP and WBI (ordinary linear regression; P <
0.05) (Fig. S17). This direct connection between corn yield and
July NEE was persistent even without including 2012 – a
historical bad year for corn yields in this region (Fig. S17).
Therefore, despite the decoupling between crop yields and CO2

exchange intensity at the annual scale, this study highlights a
dynamic modulation of temperature on cropland CO2

exchange and crop yields, which provides important implica-
tions for the impact and adaptation of crop production systems
to future climate warming.

Implications for carbon cycle impacts of future climate
warming. Projected climate data were retrieved from 10 general
circulation models that have contributed to the Coupled Model
Intercomparison Project Phase 5 (CMIP5) and run under the
RCP4.5 and RCP8.5 scenarios (see Methods). Ensemble mean
projections of average air temperature change by 2050 in the
Corn Belt were roughly 2 °C for most months under RCP8.5 and
between 0 °C and 2 °C under RCP4.5 (Fig. S18a). In contrast to
the unanimous warming, models were mixed in the direction of
projected precipitation and radiation changes under both the
RCP4.5 and RCP8.5 scenarios, resulting in small overall monthly
changes (e.g., <±10%) relative to inter-model variability in both
cases (Fig. S18b, S18c). Because the land use characteristics
(Fig. S3), crop yields (Fig. S5), and CO2 exchange dynamics
(Fig. S19) of KCMP are representative of the broader Corn Belt
(see Supplementary Discussion for an extended discussion), we
applied the projected mean temperature changes to the estimated
βT of KCMP and its uncertainty to predict how future climate
warming may impact the CO2 seasonal cycle and net CO2 uptake
in the Corn Belt. Here, we define the Corn Belt by those states in
the U.S. Midwest with significant corn and soybean land use
(Fig. S19)55,56. The total area of land ecosystems within the Corn
Belt is estimated at 148 million ha55. It is important to note that
all the projected mean air temperature changes in the Corn Belt

are within the range of historical observations at KCMP
(2010–2019; Fig. S18a), which improve the plausibility of extra-
polating to future warming scenarios.

Assuming a stasis of seasonal changes in atmospheric transport
and circulation, warming in the next decades could alter the
trajectory of the CO2 seasonal cycle (Fig. 6a). Higher summer
temperature will limit CO2 drawdowns and consequently attenuate
the CO2 seasonal amplitude from the current level by 1.5 ppm
(~5%) to 3 ppm (~10%) under the two warming scenarios (Fig. 6a).
This prediction is in line with the emerging negative impact of
warming on summer CO2 drawdown in boreal ecosystems (−2.06
ppm °C−1)14 and suggests that the loss of stimulating effects of
warming on the CO2 seasonal amplitude, as recently discovered at
the northern high latitudes (>50°N)13, may have a larger spatial
extent than previously thought. Extrapolating to the land ecosystems
of the entire Corn Belt, the negative warming impact can reduce net
CO2 uptake during the peak growing season by 30 Tg °C (90% CI: 10
to 60 Tg °C) under RCP4.5 and 60 Tg °C (90% CI: 20 to 117 Tg °C)
under RCP8.5, equivalent to approximately 10 to 20% of the annual
net CO2 sequestration (i.e., 292 Tg °C; Fig. S19) of this highly
productive region (Fig. 6b). This negative warming impact, however,
can be partially offset by the positive impact in June (12 to 29 Tg °C
under the two warming scenarios) and, to a lesser extent, May (5 to
10 Tg °C) (Fig. 6b), as a result of crop phenological development.
Integrated over the entire growing season, warming by 2050 is
projected to reduce the net CO2 uptake by 9 Tg °C (90% CI:
reduction by 54 to enhancement by 36 Tg °C) to 13 Tg °C (90% CI:
reduction by 92 to enhancement by 55 Tg °C) under the two
warming scenarios, although this negative impact is not significant at
the 90% confidence level under either scenario due to the
compensatory temperature effects on spring and summer CO2

uptake. Combining phenology observations with ecosystem-scale
NEE measurements, Keenan et al.18 showed that increased spring
and fall temperature has lengthened the growing season of temperate
forests over the eastern U.S. (total land area= 38 million ha), leading
to enhanced CO2 uptake at a rate of 16 g Cm−2 per 1 °C increase in
spring or fall. Applying this increasing rate of CO2 uptake to the
future warming scenarios suggests an annual gain of CO2

sequestration ranging from 9 to 23 Tg °C in these systems. While
it is unclear how these systems are currently responding to
temperature variations in summer, this projected increase in net
CO2 uptake is of similar magnitude to the net reduction of growing
season CO2 uptake in the Corn Belt. Collectively, these results
highlight that overall magnitude and timing of future climate

Fig. 6 Changes in the detrended CO2 seasonal cycle and net CO2 uptake in the Corn Belt under future warming scenarios by 2050. Black squares and
line in a denote the observed average seasonal cycle of CO2 during 2008–2018. Shaded area in a and error bars in b denote 90% confidence intervals
derived through resampling. It is important to note that in b, a negative warming impact denotes reduced net CO2 uptake under the future warming
scenarios.
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warming could be equally critical in determining the C sink strength
of terrestrial ecosystems at northern temperate latitudes.

It is important to note that the projected warming impacts,
based on the average monthly temperatures, do not account for
substantial reduction in CO2 sink strength by extreme heat
events34,46, which are expected to continue increasing in
frequency and severity in the future57. Besides the direct and
indirect physiological impacts of warming discussed above, the
regional CO2 seasonal cycle and CO2 sink strength are also
modulated by a myriad of slow-evolving and climate-sensitive
processes (e.g., CO2 fertilization effect, soil C turnover, and
nutrient cycling)58, which may not vary linearly with the
projected future warming at multi-decadal scales. Furthermore,
the projected future warming impacts can be countered by
adaptation measures taken by farmers, such as changes in
planting dates or use of longer-maturing cultivars40. For example,
earlier planting may be enabled by warmer spring temperatures in
the future. Shifts in development timing will therefore modulate
the weather experienced by crops and may alleviate the adverse
effects of higher summer temperatures. Because our projection
does not account for farmer adaptations, the projected warming
impacts on the CO2 uptake can be viewed as the expectation in
the absence of explicit recognition of, and adaptation to,
temperature trends from present to 2050. Thus, a key question
that remains to be answered is whether the revealed negative
warming impacts on net CO2 uptake in northern terrestrial
ecosystems indicate a future climatic tipping point for CO2

sequestration and plant productivity in these dynamical systems.
Regardless, this study challenges the paradigm that warming will
continue to benefit CO2 sequestration in terrestrial ecosystems at
northern mid-latitudes and emphasizes the need to robustly
represent the temperature sensitivity of cropland CO2 exchange
for current climate in C cycle models in order to improve the
predictability of future carbon-climate feedbacks.

Methods
Atmospheric CO2 concentration. The tall tower CO2 observations reported here
were measured from April 2007 to December 2019 at the University of Minnesota
tall tower Trace Gas Observatory (KCMP tall tower; 44.6888°N, 93.0728°W)
(Fig. S2a). Air was pulled continuously from 100 m above ground to the base of the
tower, where it was dried, subsampled, and measured for CO2 concentration at
10 Hz using a tunable diode laser spectrometer (TGA100A, Campbell Scientific
Inc., Logan, Utah, USA). The calibrated 10 Hz data were then block averaged into
hourly values, with a long-term precision of 0.2 ppm. Wind speed and direction at
100 m were measured using a sonic anemometer (CSAT3, Campbell Scientific,
Logan, Utah, USA). Further details regarding the tall tower sampling and cali-
bration scheme can be found in Griffis et al.59. CO2 concentration data collected
from 2007 to 2010 have already been reported by Zhang et al.27 and Hu et al.37 in
assessments of regional-scale CO2 fluxes. Here we use all available data and focus
our analyses on the CO2 seasonal cycle at the interannual timescale.

Two additional long-term tall tower sites from NOAA’s Global Greenhouse Gas
Reference Network, Park Falls, Wisconsin (LEF; 45.9451°N, 90.2732°W) and West
Branch, Iowa (WBI; 41.7248°N, 91.3529°W), are located within the region and
were used in this study (Fig. S2a). Hourly CO2 concentration data measured at LEF
and WBI from 2007 to 2018 at 99–122 m above ground were obtained from
NOAA’s ObsPack data products28.

The hourly CO2 time series of the three tall tower sites were de-spiked, gap-
filled, and block averaged into daily values (see Supplementary Methods for more
details). Following the method of Barlow et al.36, a wavelet transform was used to
spectrally decompose the daily CO2 time series. The detrended seasonal cycle and
long-term growth of CO2 were then isolated by summing frequencies at periods of
3–18 months and >18 months, respectively36 (Fig. S1; see Supplementary Methods
for more details). The CO2 seasonal amplitude was obtained as the peak-to-trough
difference of the detrended seasonal cycle.

To examine how the CO2 seasonal cycle measured at KCMP was mediated by
the convolution of atmospheric transport and ecosystem CO2 exchange, we
sampled the KCMP CO2 time series based on wind direction for the period
2010–2018, where we have complete wind data at 100 m height. We only
considered the hourly CO2 data with wind speed greater than 3 m s−1 to reduce
local source effects60,61. Two CO2 datasets (KCMPNW and KCMPSSE) were built
for the dominant wind directions 270°–360° (northwest) and 120°–210° (south and
southeast), respectively (Fig. 1a, b). The CO2 seasonal cycle characteristics of

KCMPNW and KCMPSSE were extracted using the same wavelet method
described above.

To infer the CO2 source and sink strength within the Corn Belt, we compared
the CO2 seasonal cycle measured at the three tower sites with continental
background CO2 measured at Niwot Ridge (NWR; 40.0531°N, 105.5864°W;
managed by NOAA’s Earth System Research Laboratory; Fig. S4). The NWR site
sits approximately 27 km west of Boulder, Colorado, and 6 km east of the
Continental Divide (Fig. S4). Although climate and biota of the site are
characterized by alpine ecosystems, NWR, at an altitude of 3526 m (3523 m
elevation; 3 m intake height), is well situated to measure CO2 concentrations in
well-mixed continental boundary layer that are representative of large areas
without significant influences from local anthropogenic emissions62,63 and
agricultural activities55. Weekly CO2 concentrations measured at NWR from 2007
to 2018 were obtained from NOAA’s ObsPack data products28.

Concentration footprint. Detailed footprint analyses have been conducted by
Hu et al.37 for KCMP using the Stochastic Time-Inverted Lagrangian Transport
model64. From these analyses, 80% of the concentration signal (i.e., sensitivity of
concentration variations to surface CO2 exchanges) originated from an area within
307, 255, 302, and 298 km radius of KCMP for the four seasons, respectively
(Fig. S4)37. Therefore, we define a 300 km radius as the intense concentration
footprint for all three tall towers by assuming that the area within this intense
footprint has equally weighted influence on the CO2 observations. We also test a
range of radii (150–450 km) to gauge how the definition of intense concentration
footprint impacts our analyses and conclusions.

Net ecosystem exchange from atmospheric inversions. Monthly terrestrial
biosphere net ecosystem CO2 exchange (NEE) within the tower footprints were
obtained from the CarbonTracker assimilation system for 2007–2018 (CT2019)29.
The CarbonTracker NEE is an inverse product (1° × 1°) derived from a priori NEE
estimates from terrestrial biosphere models and optimized using simulated
atmospheric transport and in situ atmospheric CO2 measurements (including LEF
and WBI). Zhang et al.27 compared the CarbonTracker NEE to eddy covariance-
based bottom-up estimates of NEE within a radius of 200–600 km to KCMP and
found excellent agreement between the two methods (Nash–Sutcliffe efficiency
(NSE) > 0.9), indicating that the CarbonTracker NEE is sensitive to the hetero-
geneous C exchange activities within the study domain. Using the NEE data within
the intense concentration footprints of the three tower sites, we calculated the
annual amplitude of NEE, defined as the difference in cumulative NEE between the
dormant season (October–April next year) and the growing season
(May–September).

Land use characteristics. High resolution (30 m) land cover data were obtained
from the USDA’s National Agricultural Statistical Service National Cropland Data
Layer (NCDL) for 2008–2018. We define an index, fCS, calculated as the ratio of
land area of corn and soybean to total area of land ecosystems (i.e., croplands plus
natural ecosystems), to quantify the fractional influence of corn and soybean within
each tower concentration footprint (Fig. S3). Pasture, spring and winter wheat,
oats, and perennial crops such as alfalfa hay, which were present to various degrees
within the concentration footprints of the three tall tower sites (Fig. S2), were
grouped into the category of natural ecosystems in this study because of the
challenge of separating pastures from natural grasslands, as well as the long
growing seasons of these crops relative to corn and soybean26. More description of
the land use characteristics is provided in Supplementary Methods.

Crop data. County‐level corn and soybean statistics from 2008 to 2018 were
retrieved from the USDA’s Quick Stats 2.0 database. Total grain production and
harvested area for counties that fall within or intercept the intense concentration
footprints (300 km radius) of KCMP and WBI were aggregated to calculate annual
crop yields (in the unit of t ha−1) for the two sites.

Climate data. Gridded daily average air temperature (2 m), precipitation, and
incoming shortwave radiation within the tower concentration footprints were
obtained from the National Center for Environmental Prediction North American
Regional Reanalysis (NCEP-NARR) for 2007–2019. Daily minimum and max-
imum air temperature data were obtained from PRISM climate data (https://prism.
oregonstate.edu/). Projected climate data for 2006–2050 over the entire study
domain were retrieved from 10 general circulation models that have contributed to
the Coupled Model Intercomparison Project Phase 5 (CMIP5). We used projection
data derived under two warming scenarios: RCP4.5 and RCP8.5. Importantly,
RCP4.5 is a median scenario for future greenhouse gas emissions with modest
climate mitigation, while RCP8.5 is a high emission scenario assuming no
mitigation65,66. Following the method of Lobell et al.67, the projected climate date
time series were downscaled to correct for biases in the coarse-scale outputs from
the CMIP5 models. This downscaling ensures that the mean and variance of
projected climate data match the observational record for the period 2008–2018,
while preserving any simulated trends out to 2050. Changes by 2050 were then
calculated as averages for 2041–2050 minus averages for 2010–2019.
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Simulation of corn leaf emergence date. Corn leaf emergence date (CLED)
within the intense concentration footprints of KCMP and WBI was simulated
using growing degree time (GDT) with a base temperature of 8 °C (Fig. S15a)38.
Corn leaf emergence occurs when GDT exceeds the threshold of 450 units,
assuming that land managers have already planted their fields38. Following the
method of De Wit et al.68, diel temperature cycles within the tower concentration
footprints were approximated using daily minimum and maximum temperatures
to enable accumulation of heat units on an hourly time step. Our previous research
showed that CLED simulated using this method has close agreement with long-
term observations made at multiple AmeriFlux sites throughout the Corn Belt (e.g.,
Minnesota, Iowa, Illinois, Nebraska)38.

Statistical analyses. Monotonic trends in the annual CO2 exchange metrics (i.e.,
the CO2 seasonal amplitude and the NEE amplitude) and crop yields were tested
using the Mann-Kendall trend test and then estimated using the nonparametric
Theil–Sen estimator, which is a robust method and insensitive to outliers.

To examine how changes in the CO2 seasonal cycle were linked to interannual
temperature variations, the daily values of the detrended CO2 seasonal cycle were
block averaged into monthly values for calculation of the first time derivative of the
CO2 concentration (i.e., change in CO2 concentrations from one month to the
previous month), ΔCO2 (Fig. S6). The monthly time series of ΔCO2, NEE, and
climate data were then linearly detrended (using the “detrend” function of
MATLAB) for each month of the year to allow the following analyses to focus on
the interannual relationship between temperature and CO2 exchange anomalies
(i.e., ΔCO2 and NEE)69. The interannual sensitivity of ΔCO2 (or NEE) anomaly to
temperature variations (βT) for a given month was estimated as the slope of the
regression of temperature in a multiple linear regression (MLR) of ΔCO2 (or NEE)
against temperature, water availability, and radiation, such that indirect effects
arising from covariations between the climate anomalies are accounted for in
deriving βT (i.e., equivalent to a partial correlation between temperature and CO2

exchange anomalies controlled for the effects of precipitation and radiation
anomalies)50. We constructed detrended time series of precipitation anomaly
cumulated for various lag time durations (2–6 months) to account for potential
legacy effects of precipitation on ecosystem CO2 exchange70 and found that using a
3-month cumulative precipitation (P3m) anomaly in the MLR resulted in the best
regression fits for the three tower sites in combination. Therefore, P3m was used as
an index of water availability for all subsequent analyses. Uncertainty in the
estimated βT due to finite historical observations was estimated using bootstrap
resampling (1000 iterations).

To further contrast the temperature sensitivity between croplands (i.e., corn and
soybeans) and natural ecosystems, we used a panel data model that combines the
climate (ΔT, ΔP3m, and ΔR) and NEE anomalies of each month, year, and site
(superscripts m, y, and s) and decomposes the site-specific temperature,
precipitation, and radiation sensitivities (i.e., βT, βP(3m), and βR) into sensitivities
specific to croplands and natural ecosystems (subscripts CS and NV). This is
achieved by weighting the climate sensitivities using the land fractions of croplands
(i.e., βT) and natural ecosystems (fNV; fNV= 1− fCS) within the tower footprints:

ΔNEEm;y;s ¼ f y;sCS � βmT;CS þ f y;sNV � βmT;NV
� �

� ΔTm;y;s

þ f y;sCS � βmP 3mð Þ;CS þ f y;sNV � βmP 3mð Þ;NV
� �

� ΔPm;y;s
3m

þ f y;sCS � βmR;CS þ f y;sNV � βmR;NV
� �

� ΔRm;y;s þ εm;y;s

ð1Þ

where ɛm,y,s stands for the error term for site s in month m and year y. The model
performance was evaluated using R2 for individual months. Confidence intervals of
the biome-specific climate sensitivities were estimated using bootstrap resampling,
assuming 10% uniform random error in fCS. The key assumption underlying Eq. 1
is that although fCS differed significantly, the biome-specific climate sensitivities
were similar across the three tower sites. This assumption was evaluated by
comparing the sensitivities reconstructed from the derived biome-specific
sensitivities to the “true” sensitivities independently estimated from the MLR of
each tower site. The results show that the site-specific climate sensitivities of NEE
can be successfully reproduced by the biome-specific sensitivities and fCS at all
three sites (NSE > 0.9; Fig. S12). This lends strong support for the use of the panel
model that unifies the C exchange and climate anomalies across this heterogeneous
region. Please see Supplementary Discussion for an extended discussion on the
panel data analysis and its validation.

Following the method of Zhu et al.31, temperature sensitivity (γ) of corn yields
(Y) within the intense concentration footprints of KCMP and WBI was estimated
using a panel data model with mean spring temperature (i.e., May and June; TMJ),
summer temperature (i.e., July and August; TJA), and growing season precipitation
(P) as the explanatory variables:

Yy;s ¼ γ1 � t þ γMJ � Ty;s
MJ þ γJA � Ty;s

JA þ γP � Py;s þ Cs þ εy;s ð2Þ
where t denotes each year and γ1·t captures the yield increasing trend observed
within the footprints of KCMP and WBI. C corresponds to fixed effects of each site
and accounts for time-invariant site differences, e.g., the soil quality. ɛy,s stands for
the error term for site s in year y. We did not include a quadratic term of
temperature in the model because of the limited number of observations (22 site-
years) and the fact that growing season temperature spanned a relatively narrow

range (e.g., 4.1° and 5.5° for mean July and August temperature at KCMP and WBI,
respectively) during the study period.

Data availability
The hourly CO2 concentration data measured at the KCMP tower from 2007 to 2019
have been deposited in the Environmental System Science Data Infrastructure for a
Virtual Ecosystem (ESS-DIVE) (DOI: 10.15485/1634840) and are available for download
at https://data.ess-dive.lbl.gov/view/doi:10.15485/1634840. Other data supporting the
findings of this study are available in the supplementary information files.

Code availability
MATLAB codes for the statistical analyses are available upon request.
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