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Comprehensive evidence implies a higher 
social cost of CO2

Kevin Rennert1, Frank Errickson2,15, Brian C. Prest1,15, Lisa Rennels3,15, Richard G. Newell1, 
William Pizer1, Cora Kingdon3, Jordan Wingenroth1, Roger Cooke1, Bryan Parthum4, 
David Smith4, Kevin Cromar5,6, Delavane Diaz7, Frances C. Moore8, Ulrich K. Müller9, 
Richard J. Plevin10, Adrian E. Raftery11, Hana Ševčíková12, Hannah Sheets13, James H. Stock14, 
Tammy Tan4, Mark Watson9, Tony E. Wong13 & David Anthoff3 ✉

The social cost of carbon dioxide (SC-CO2) measures the monetized value of the 
damages to society caused by an incremental metric tonne of CO2 emissions and is a 
key metric informing climate policy. Used by governments and other decision-makers 
in benefit–cost analysis for over a decade, SC-CO2 estimates draw on climate science, 
economics, demography and other disciplines. However, a 2017 report by the US 
National Academies of Sciences, Engineering, and Medicine1 (NASEM) highlighted 
that current SC-CO2 estimates no longer reflect the latest research. The report 
provided a series of recommendations for improving the scientific basis, transparency 
and uncertainty characterization of SC-CO2 estimates. Here we show that improved 
probabilistic socioeconomic projections, climate models, damage functions, and 
discounting methods that collectively reflect theoretically consistent valuation of 
risk, substantially increase estimates of the SC-CO2. Our preferred mean SC-CO2 
estimate is $185 per tonne of CO2 ($44–$413 per tCO2: 5%–95% range, 2020 US dollars) 
at a near-term risk-free discount rate of 2%, a value 3.6 times higher than the US 
government’s current value of $51 per tCO2. Our estimates incorporate updated 
scientific understanding throughout all components of SC-CO2 estimation in the new 
open-source Greenhouse Gas Impact Value Estimator (GIVE) model, in a manner fully 
responsive to the near-term NASEM recommendations. Our higher SC-CO2 values, 
compared with estimates currently used in policy evaluation, substantially increase 
the estimated benefits of greenhouse gas mitigation and thereby increase the 
expected net benefits of more stringent climate policies.

Policies to mitigate greenhouse gas emissions are often evaluated in 
terms of their net benefits to society. The net benefit of a climate policy 
is the difference between the economic cost of the emission reduction 
(the mitigation costs), and the value of the damages that are prevented 
by that emission reduction (climate benefits, among others). In regula-
tory impact analysis the climate benefits of CO2 emission reductions 
are typically computed by multiplying the change in CO2 emissions 
caused by the policy with an estimate of the SC-CO2. This makes the 
SC-CO2 a highly influential metric, informing analysis of a wide range 
of climate policies worldwide.

For more than a decade, the US government has used the SC-CO2 
to measure the benefits of reducing carbon dioxide emissions in its 
required regulatory analysis of more than 60 finalized, economically 
significant regulations, including standards for appliance energy effi-
ciency and vehicle and power plant emissions2. In the USA, the SC-CO2 

has also been used as the basis for federal tax credits for carbon cap-
ture and storage; proposed federal carbon tax legislation; state-level 
zero-emission credit payments for nuclear generators and power sec-
tor planning; among other applications3. The SC-CO2 also supports 
decision-making by government environmental agencies in other 
countries (for example, Germany, Canada and Mexico), and is used in 
standardized corporate environmental and sustainability accounting4.

The SC-CO2 is estimated using integrated assessment models (IAMs) 
that couple simplified representations of the climate system and global 
economy to estimate the economic effects of an incremental pulse of 
CO2 emissions. These models generally follow a four-step process in 
which (1) projections of population and gross domestic product (GDP) 
inform a CO2 emissions pathway; (2) the CO2 emissions path drives 
a climate model that projects atmospheric greenhouse gas concen-
trations, temperature changes and other physical variables such as 
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sea level rise; (3) the resulting climate change impacts are monetized 
and aggregated as economic damages; and (4) economic discounting 
combines all future damages into a single present value.

In 2017, a NASEM report assessing the SC-CO2 estimation methodol-
ogy used by the US federal government found that the leading IAMs 
used for estimating the SC-CO2 have not kept pace with recent advances 
in climate, economic and demographic science1. The NASEM report 
offered near-term recommendations for improving each step of the 
SC-CO2 estimation process to improve the scientific basis, charac-
terization of uncertainty, and transparency of the SC-CO2. Recently, 
Executive Order 13990 re-established the US Interagency Working 
Group on the Social Cost of Greenhouse Gases (IWG) to update the 
federal government’s official SC-CO2 estimates, and to consider these 
NASEM recommendations in the process. Others have also criticized 
the models supporting the past federal SC-CO2 estimates for problems 
including damages representations that do not reflect recent science, 
outdated climate system models, and imperfect characterization of the 
compounding uncertainties affecting SC-CO2 estimates5–7.

Here we provide probabilistic SC-CO2 estimates from the Green-
house Gas Impact Value Estimator (GIVE), a newly created integrated 
assessment model designed for quantifying the benefits of emission 
reductions. The model is built on the Mimi.jl platform, an open-source 
package for constructing modular integrated assessment models8. 
By using novel components for each step of the SC-CO2 estimation 

process, GIVE incorporates recent scientific advances that are unac-
counted for by the previous generation of IAMs used in regulatory 
analysis. Crucially, GIVE quantifies uncertainties in each component 
and propagates these compounding uncertainties through the entire 
computation, thus allowing for a theoretically consistent valuation of 
the risk associated with a marginal emission of CO2.

Each individual component in GIVE is based on recent peer-reviewed 
research on socioeconomic projections, climate modelling, climate 
impact assessments and economic discounting. We implement GIVE 
with a set of internally consistent, probabilistic projections of popula-
tion9, per capita economic growth3,10, and CO2, CH4 and N2O emissions3 
generated using a combination of statistical modelling and expert 
elicitation, collectively referred to as the Resources for the Future Socio-
economic Projections3 (RFF-SPs). Many existing IAMs use outdated 
climate models and have been shown to produce temperature dynamics 
inconsistent with more sophisticated Earth system models1,11. Further, 
damage functions supporting previous SC-CO2 estimates are, to a large 
extent, based on studies from several decades ago1. A vast literature 
since then has expanded and improved our scientific understanding 
of how changes in climate are likely to affect human wellbeing12. To 
address these shortcomings, we combine socioeconomic uncertainty 
with probabilistic models for the climate system and damage functions 
(defined as functions that relate changes in climate outcomes such as 
temperature to economic impacts in dollars). The GIVE model employs 
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Fig. 1 | RFF-SP socioeconomic scenarios and the resulting climate system 
projections. a–c, Probabilistic socioeconomic projections for global 
population (a), per capita GDP growth rates (b), and carbon dioxide emission 
levels (c) from the RFF-SP scenarios. d–f, Corresponding climate system 
projections that account for parametric uncertainty in FaIR and BRICK for 

atmospheric carbon dioxide concentrations (d), global surface temperature 
changes relative to the 1850–1900 mean (e), and global mean sea-level changes 
relative to 1900 (f). In all panels, solid centre lines depict the median outcome, 
with darker shading spanning the 25%–75% quantile range and lighter shading 
spanning the 5%–95% quantile range.
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the FaIR v1.6.2 climate model13,14, the BRICK sea-level model15–17, and 
updated damage function components representing the latest empiri-
cal research for the impacts of climate on agriculture18, mortality19, 
energy consumption20 and sea-level rise21.

Recent important contributions to the SC-CO2 literature have 
generated improvements to various components used by IAMs22–27  
(see Supplementary Information section SI.3 for an overview of this 
literature). The GIVE model’s key contribution to this literature is the 
holistic implementation of recent advances in probabilistic socio-
economics accounting for policy uncertainty, fully quantified scien-
tific uncertainty including climate tail risk and sea-level rise, addition 
of non-market sectoral damages (that is, costs not included in GDP 
accounting, such as mortality risk), and economic discounting tied to 
uncertain economic growth. These advances enable a full valuation of 
the risk resulting from those compounding uncertainties on the basis 
of improved scientific, economic and demographic evidence3, which 
have previously been unavailable. The GIVE model’s implementation 
of this comprehensive set of scientific improvements affirms a key 
result from recent work on the SC-CO2

22–27, namely that improved sci-
entific understanding of the components of SC-CO2 calculation leads 
to a higher SC-CO2 than has been previously used in US policymaking; 
moreover, our approach demonstrates this using a more robust meth-
odology that reflects the current state of the literature. GIVE’s inputs 
and outputs are spatially resolved at the level of 184 countries for popu-
lation, income and damages (except for agriculture damage outputs, 
which are resolved at 16 regions). Climate change has the potential 
to exacerbate existing economic inequities6,28,29, and our work would 
allow future consideration of this issue through equity weighting30.

We calculate the SC-CO2 as the discounted sum of additional damages 
per incremental tonne of CO2 produced by an emissions pulse in 2020 
along an uncertain emissions trajectory derived via formal expert elici-
tation that reflects continued technology and policy evolution. We use 
an empirically calibrated stochastic discounting framework consistent 
with the observed behaviour of interest rates and economic growth31. 
We provide 10,000 SC-CO2 values using a Monte Carlo approach that 
samples interrelated socioeconomic, climate, and damage function 
uncertainties (Extended Data Table 2). The GIVE model can also be used 
to compute the social cost of other greenhouse gases (for example, 
CH4, N2O and hydrofluorocarbons).

We illustrate the relative importance of our updated model com-
ponents by comparing them to outputs from the well known DICE 
model32. We also assess the sensitivity of our SC-CO2 estimates to our 
choice of sectoral, regionally disaggregated damage functions by 
comparing them to two aggregate, global damage functions based 
on meta-analyses of the broader damages literature32,33.

Socioeconomic projections of economic growth, population and 
greenhouse gas emissions represent important sources of uncertainty 
in the SC-CO2. In previous models, this uncertainty has been poorly 
characterized1,34,35. Population and growth scenarios based upon the 
Shared Socioeconomic Pathway (SSP)36 narratives, which were promi-
nently featured in the Intergovernmental Panel on Climate Change 
(IPCC) Sixth Assessment Report (AR6)14, do not typically come with 
associated probabilities, though there have been efforts to assign such 
probabilities a posteriori on the basis of expert surveys37. The small 
number of SSPs precludes sampling the large and continuous space of 
possibilities that characterizes future socioeconomics and emissions. 
A strength of scenario-based analysis is in the qualitative exploration 
of uncertainty, for example through the use of bounding scenarios, 
including scenarios accounting for outcomes well outside the range 
of historical experience that become increasingly possible over very 
long time horizons. Such an approach does not, however, facilitate the 
quantitative evaluation of uncertainty and the calculation of expected 
values, a common requirement for policy analysis. In some cases,  
a lack of quantification of relative probabilities can lead to disagree-
ments over what scenarios constitute a plausible reference case38–40.  

A holistic, probabilistic approach to accounting for these uncertainties 
was recently introduced41,42. Building on this approach, we sample the 
RFF-SPs, comprising multi-century probabilistic projections of popula-
tion9 and GDP per capita10 at the country level as well as a distribution 
of projections of global CO2, CH4 and N2O emissions derived from a 
combination of statistical and expert-based approaches.

The RFF-SPs complement the scenario-based approach by provid-
ing an alternative approach that characterizes the joint uncertainty 
across annual GDP, population and greenhouse gas emissions for the 
multi-century timespan required for climate damage estimation. They 
also leverage expert knowledge to account for potential future changes 
in policy and technology. The RFF-SPs project that (Fig. 1): median 
world population peaks at 11 billion around 2130 and subsequently 
declines to 7.3 billion in 2300, (2.8 billion–21 billion: 5%–95% range); 
median global per capita annualized economic growth declines slowly 
to reach a cumulative time-average rate of 0.88% between 2020 and 
2300 (0.17%–2.7%: 5%–95% range); median net global CO2 emissions 
decline to 17 GtCO2 in 2100, which is roughly 40% of today’s levels 
(−7 GtCO2 to 62 GtCO2: 5%–95% range), with slower declines thereaf-
ter (see Supplementary Information section SI.1 for more detail on 
the RFF-SPs).

Our mean SC-CO2 estimate using the preferred discounting scheme 
is $185 per tCO2 ($44–$413 per tCO2: 5%–95% range, in 2020 US dollars, 
as are all dollar results in this study) (Fig. 2). This is 3.6 times greater 
than the US government’s current, most commonly cited mean value 
of $51 per tCO2 using a 3% constant discount rate43. We report mean 
SC-CO2 values throughout this paper to align our results with the stand-
ard expected net benefit framework that is routinely used for policy 
analysis44 and supported by standard economic theory45,46.

SC-CO2 estimates are well known to be highly sensitive to the discount 
rate32 because the long residence time of CO2 in the atmosphere means a 
CO2 emissions pulse continues to cause damages long after it was emit-
ted. Our preferred discounting scheme uses a 2% near-term risk-free 
discount rate, which reflects the recent literature on real interest  
rates47–49, which have declined substantially over recent decades50,51, as 
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Fig. 2 | SC-CO2 distributions vary with the choice of near-term discount 
rates. Distributions of the SC-CO2 based on RFF-SP scenario samples, 
 a stochastic, growth-linked discounting framework, uncertainty in the FaIR 
climate and BRICK sea-level models, and uncertainty in climate damage 
parameters. Colours correspond to near-term average discount rates of 3.0% 
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range (coloured horizontal lines) values. All SC-CO2 values are expressed in 
2020 US dollars per metric tonne of CO2.
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well as the central tendency from a survey of academic economists52. 
Our discount rate is related to stochastic consumption growth in a 
Ramsey-like equation, which is the commonly used approach to value 
marginal impacts amid uncertainty in future payoffs and consump-
tion levels53,54. In this way, the parameterization of the discount rate 
captures risk preferences using the risk aversion parameters discussed 
in Methods.

We also assess (Extended Data Fig. 1 and Table 1) the sensitivity of 
our SC-CO2 estimates to discounting by also using near-term rates of 
3% ($80 per tCO2 mean, $12–$197 per tCO2: 5%–95% range), to facilitate 
comparison with the US government’s current, most commonly cited 
$51 per tCO2 figure, as well as 2.5% ($118 per tCO2 mean, $23–$280 per 
tCO2: 5%–95% range) and 1.5% ($308 per tCO2 mean, $94–$626 per 
tCO2: 5%–95% range). We additionally show (Extended Data Fig. 2) the 
temporal evolution of the discounted marginal damages by year based 
upon the preferred 2% near-term discount rate case.

Our SC-CO2 estimates are based on regionally disaggregated damage 
functions for four sectors. As a sensitivity analysis, we replace the sec-
toral damage functions in GIVE with two distinct, globally aggregated 
damage functions that are based on meta-analyses of the climate impact 
literature32,33. Under a 2% near-term discount rate, these sensitivity 
runs yield relatively similar SC-CO2 distributions with mean values 
that differ by −18% to +11% (Extended Data Table 1) from our preferred 
SC-CO2 estimate (Extended Data Fig. 1).

The single largest contributor to the overall increase in the SC-CO2 
relative to the widely used DICE model is the use of a lower near-term 
discount rate, and updated damage functions are the second largest 
contributor. We disaggregate impacts of the changes to the near-term 
discount rate, the sectoral damage functions, and the remaining GIVE 
components (the RFF-SPs and FaIR) in Table 1. We start by running 
DICE-2016R, which uses none of our updated components and uses 
DICE’s default discounting approach, yielding an SC-CO2 estimate of 
$44 per tCO2. Updating the climate modelling, the socioeconomic 
scenarios, and the discounting approach reflecting a 3% near-term 
discount rate but retaining the DICE-2016R damage function increases 

the mean SC-CO2 by 34% to $59 per tCO2. Incorporating our sectoral 
damage functions in place of the DICE-2016R damage function further 
increases the estimate to $80 per tCO2, or a total increase of 81%. Finally, 
using a lower 2% near-term discount rate has the largest effect, increas-
ing the mean SC-CO2 estimate to this study’s value of $185 per tCO2,  
a 321% increase relative to $44 per tCO2, and a 3.6-fold increase relative 
to the widely cited US government value of $51 per tCO2.

The four climate damage sectors represented in the model vary sub-
stantially in their respective contributions to the overall magnitude and 
uncertainty of the SC-CO2 (Fig. 3). Temperature mortality impacts are 
the largest driver of the SC-CO2, contributing a mean partial SC-CO2 
(defined as the SC-CO2 estimated for an individual impact sector) of 
$90 per tCO2 ($39–$165 per tCO2: 5%–95% range) to the $185 per tCO2 
total using a near-term 2% discount rate. Agricultural impacts have a 
similar mean contribution of $84 per tCO2, but greater uncertainty, with 
a 5%–95% partial SC-CO2 range spanning −$23 to $263 per tCO2. This 
large range, which includes the potential for beneficial effects of higher 
temperatures and CO2 concentrations on agriculture, arises owing to 
compounding uncertainty in the relationship between CO2, tempera-
ture and crop yields, and how these factors interact with the economic 
system to affect human welfare18. We sample uncertain parameters 
for mortality and agriculture (see Methods), the damage sectors for 
which parameter uncertainty is quantified in the underlying studies.

The relatively small contribution of sea-level rise, which includes 
both coastal damages and adaptation costs, to the total SC-CO2 (mean 
partial SC-CO2 of $2 per tCO2, $0–$4 per tCO2: 5%–95% range) is attribut-
able in part to the inertia in the physical system connecting CO2 emis-
sions and sea-level rise and in part to the optimal regional adaptation 
response allowed by the Coastal Impact and Adaptation Model (CIAM) 
that we incorporate into GIVE21. Such optimal, forward-looking adap-
tation responses can substantially reduce estimated coastal damages 
relative to a static scenario assuming no response to evolving coastal 
risks55,56. Future research could improve the characterization of plau-
sible versus optimal coastal adaptation responses. The relatively slow 
pace of sea-level rise also causes the greatest damages to occur far in 
the future when discounting effects are strongest. Energy costs for 
residential and commercial buildings (based on a previous work)20 
also make a relatively small contribution to the overall SC-CO2 (mean 
partial SC-CO2 of $9 per tCO2, $4–$15 per tCO2: 5%–95% range), owing 
to increased energy demand from cooling being offset by decreased 
heating demand and future technological progress; these results are 
broadly consistent with other recent empirical work57.

We quantify the impact on four critical, globally significant damage 
sectors that are often considered to contribute the most to the SC-CO2

1,58 
and for which studies exist that can be readily incorporated into SC-CO2 
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Fig. 3 | Partial SC-CO2 estimates and uncertainty levels strongly differ 
across the four climate damage sectors. Box and whisker plots for the climate 
damage sectors included in the GIVE model, based on partial SC-CO2 estimates 
for each sector. The figure depicts the median (centre white line), 25%–75% 
quantile range (box width), and 5%–95% quantile range (coloured horizontal 
lines) partial SC-CO2 values. Black diamonds highlight each sector’s mean 
partial SC-CO2, with the numeric value written directly above. All SC-CO2 values 
are expressed in 2020 US dollars per metric tonne of CO2.

Table 1 | Evolution of mean SC-CO2 from DICE-2016R to this 
study

Row Scenario Mean SC-CO2 
($ per tCO2)

Incremental change 
($ per tCO2)

Share 
of total 

change (%)

a DICE-2016R 44

b GIVE with DICE 
damage function, 
3% near-term 
discount rate

59 15 11

c GIVE with sectoral 
damages, 3% 
near-term 
discount rate

80 21 15

d This study: GIVE 
with sectoral 
damages, 2% 
near-term 
discount rate

185 105 74

All SC-CO2 values are expressed in 2020 US dollars per metric tonne of CO2. Row a represents 
the SC-CO2 using base DICE-2016R deterministic. The mean SC-CO2 of $44 per tCO2 is similar 
to the value previously estimated from IWG DICE-2010 of $46 per tCO2 at a 3% discount rate, 
after converting to 2020 dollars65. Row b then retains the DICE-2016R damage function but 
otherwise deploys GIVE under discounting parameters of ρ = 0.8%, η = 1.57, which are consistent  
with a 3% near-term discount rate (see Methods section ‘Discounting’ for descriptions of ρ 
and η). Row c replaces the DICE-2016R damage function with our sectoral damage functions, 
and row d then uses our preferred discounting parameters from this study of ρ = 0.2%, η = 1.24, 
which are consistent with a 2% near-term discount rate. The final row represents the preferred 
mean value from this study.
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estimation owing to their global coverage, regional disaggregation 
and monetization. A limitation of this study is that other categories 
of climate damages—including additional non-market damages other 
than human mortality—remain unaccounted for. The inclusion of addi-
tional damage sectors such as biodiversity59, labour productivity60,61,  
conflict62 and migration63 in future work would further improve our 
estimates. Current evidence strongly suggests that including these 
sectors would raise the estimates of the SC-CO2, although accounting 
for adaptation responses could potentially counteract some of that 
effect. Other costs of climate change, including the loss of cultural 
heritage, particular ways of life, or valued ecosystems, may never be 
fully valued in economic terms but would also probably raise the SC-CO2 
beyond the estimates presented here. The addition of alternate studies 
covering the same sectors to incorporate additional independent lines 
of evidence is also a promising area for continued work to improve the 
SC-CO2. The modular structure of the Mimi.jl framework facilitates 
such addition of new damage sectors with ease, providing a flexible 
basis for future scientific improvement of the SC-CO2.

Although we approximate the effects of a rapid Antarctic ice sheet 
disintegration tipping point within the BRICK sea-level component, 
incorporating additional potential discontinuities in the climate sys-
tem would further improve our SC-CO2 estimates64. We expect that, 
in total, the future inclusion of additional damage sectors and tipping 
elements will probably raise the estimates of the SC-CO2, and therefore 
that the estimates from the present study are probably best viewed as 
conservative. Similarly, accounting for different climate model struc-
tures, as the recent IPCC AR6 report does in chapter 714, would further 
strengthen the robustness of our SC-CO2 estimates and their associated 
uncertainty levels. For example, that chapter (see cross-chapter box 7.1 
and table 2)14 shows that the MAGICC climate model projects slightly 
higher temperature increases than the FaIR model.

The methods used in this study reflect the culmination of several 
important advances: development of fully probabilistic very-long-run 
socioeconomic inputs that natively incorporate uncertainty over 
future climate policy; incorporation of state-of-the-science repre-
sentations of the climate system and sectoral damage functions; and 
an empirically calibrated discounting approach that accounts for 
uncertainty in future economic growth. These advances collectively 
allow for the full characterization of uncertainties, and their com-
pounding interactions, throughout all steps of SC-CO2 estimation, 
including sectoral market and nonmarket damages to human health. 
Their implementation on Mimi.jl8, an open-source, modular compu-
tational platform for assembling IAMs, improves the scientific basis 
and transparency of the resulting estimates and is responsive to the 
NASEM near-term recommendations. The methodology also provides 
a straightforward means with which to calculate SC-CO2 results for 
other years and estimate the social cost of other greenhouse gases 
(for example, CH4, N2O and hydrofluorocarbons). Our higher SC-CO2 
values, compared to estimates currently used in policy evaluation, 
substantially increase the estimated benefits of greenhouse gas mitiga-
tion, and thereby increase the expected net benefits of more stringent 
climate change policies.
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Methods

Socioeconomic projections
The RFF-SPs3 used in this study were designed to address the require-
ments for socioeconomic projections posed by SC-CO2 estimation: (1) 
The roughly 300-year time horizon required to account for the vast 
majority of discounted future damages; (2) the need for geographically 
disaggregated estimates of GDP and population to support damages at 
a regional scale; (3) uncertainty accounting for expected future changes 
in both technology and policy (the SC-CO2 is measured against the best 
estimate of future emissions, inclusive of future mitigation policies 
except the one under analysis); and (4) the interdependence of future 
population, GDP and greenhouse gas emissions trajectories1.

The RFF-SPs address key shortcomings identified in the approach 
to socioeconomic projections originally developed by the US IWG 
in 201066 and used consistently through the current US interim esti-
mates43. The IWG used five socioeconomic scenarios to 2100, drawn 
from the Energy Modeling Forum 22 modelling exercise67, one of which 
represented future climate policy. The IWG scenarios were critiqued for 
not spanning the true uncertainty in GDP, population and emissions, 
nor reflecting the broader scenario literature overall34,68. The RFF-SPs 
used here improve on those scenarios by explicitly characterizing 
uncertainty in the demographic, economic and emissions projections.

The multi-century time horizon required for the projections is long 
relative to the length of the historical record available to estimate 
country-level statistical models of population and economic growth. 
Accounting for uncertainty in future emissions over that time horizon 
requires assessing the potential for structural changes in technology 
and policies that are out of the range of historical experience. To address 
these challenges, the RFF-SPs were generated based upon a combina-
tion of statistical and expert-based approaches.

We generated probabilistic, country-level population projections 
through 23009 by extending the fully probabilistic statistical approach 
used by the United Nations for its official population forecasts to 2100. 
We further incorporated feedback and improvements suggested by a 
panel of nine leading demographic experts convened to review pre-
liminary results.

Our trajectories of country-level GDP per capita from 2018 to 2300 
come from a multifactor Bayesian dynamic model, in which each country’s  
GDP per capita is based on a global frontier of developed economies 
and country-specific deviations from that frontier10. We reweight the 
probabilities of the Bayesian model trajectories using results from the 
RFF Economic Growth Survey, a formal expert elicitation focused on 
quantifying uncertainty in long-run economic growth3.

The resulting probabilistic socioeconomic trajectories represent an 
alternative to existing scenario-based approaches, such as those based 
on the Shared Socioeconomic Pathways narratives. Such scenarios do 
not typically come with associated probabilities, though there have 
been efforts to assign such probabilities to the SSPs a posteriori on the 
basis of expert surveys37. The use of non-probabilistic scenarios have 
been criticized in the literature for being overconfident and failing to 
reflect uncertainty69. Indeed, multi-century socioeconomic projec-
tions are deeply uncertain, as illustrated by the wide 5%–95% ranges 
that we consider (see Fig. 1). The scenarios based on the SSP narratives 
and their commonly used extensions beyond 210063,70–72 fail to span 
that uncertainty3.

We also generate multi-century distributions of global CO2, CH4 
and N2O emissions through RFF’s Future Emissions Survey, which 
elicited experts in socioeconomic projections and climate policy3. 
Experts provided uncertainty ranges for future fossil fuel and 
process-related CO2 emissions as well as changes in natural CO2 stocks 
and negative-emissions technologies, incorporating their own uncer-
tainty around future mitigation policy. They also quantified the sen-
sitivity of emissions projections to future economic growth, thereby 
allowing for the development of a joint set of projections of emissions 

and economic growth. The experts additionally provided uncertainty 
ranges for trajectories of CH4 emissions, N2O emissions, and net CO2 
emissions from other sources of CO2 emissions and sinks.

Climate models
FAIR. We represent the global climate system and carbon cycle dynamics 
using version 1.6.2 of the Finite Amplitude Impulse Response (FaIR) 
model73–75. FaIR is an emissions-based simple climate model with a 
carbon cycle that depends on background warming levels and cumu-
lative carbon uptake by land and ocean sinks. This state-dependency 
enables FaIR to replicate the equilibrium and impulse-response  
behaviours found in more sophisticated Earth system models, which 
is important for producing scientifically grounded SC-CO2 estimates. 
These features are not found in the previous climate models used for 
SC-CO2 calculations, which lack carbon cycle feedback and have been 
shown to respond too slowly to changes in radiative forcing1,11. We run 
FaIR with randomly sampled CO2, CH4 and N2O emissions time series 
from the RFF-SPs and represent other greenhouse gases and short-lived 
climate forcers using the SSP2-4.5 scenario76, which is the scenario 
that most closely matches the median RFF-SP emissions trajectories. 
We account for climate model uncertainties by randomly sampling a 
calibrated 2,237-member ensemble of parameters that was produced 
using FaIR as part of the IPCC AR674. See Supplementary Information 
section SI.2 for more detail on the FaIR model.

BRICK. We make probabilistic projections of regional changes in sea 
level using the Building blocks for Relevant Ice and Climate Knowledge 
(BRICK) model. BRICK represents individual contributions to sea level 
from the Greenland and Antarctic ice sheets, glaciers and small ice caps, 
thermal expansion, and land water storage and has been thoroughly 
described in prior studies15. BRICK downscales changes in global sea 
level to regional changes using maps of time-invariant scaling fac-
tors15,77. The Antarctic ice sheet model component also accounts for a 
potential tipping point where rapid ice sheet disintegration can occur 
when annual mean Antarctic surface temperatures cross an uncertain 
threshold16.

We closely follow past work and calibrate BRICK to the historic 
sea-level record over the period 1850–2017 with a Bayesian frame-
work15,17,78,79. This calibration process uses observational constraints 
on global mean sea-level changes80 in addition to individual contribu-
tions from glaciers and small ice caps81, the Greenland ice sheet82,83, 
the Antarctic ice sheet84 and trends in thermal expansion85. It further 
statistically accounts for measurement error estimates provided with 
each observational time-series dataset86. We select physically informed 
prior distributions for BRICK’s uncertain parameters that are consist-
ent with previous model calibration studies15,17. For the Antarctic ice 
sheet model component, we select prior distributions based on a 
paeleoclimate calibration that uses independent sea-level data from 
240,000 years before the current era to the present16. We use our cali-
bration framework to create a Markov chain of ten million representa-
tive samples from BRICK’s joint posterior parameter distribution and 
assess convergence based on graphical diagnostics and Gelman–Rubin 
potential scale reduction factors that are less than 1.187,88. We discard 
the first one million samples for the initial burn-in period and select 
a random subset of 10,000 samples from the remaining chain for our 
final sea-level parameter values. The distributions of the uncertain 
parameters in BRICK are shown in Supplementary Information Table 4.

Damage functions
Sea-level rise. The sea-level rise damage calculations are based on 
a previous work21 that presents the Coastal Impacts and Adaptation 
Model (CIAM). CIAM is an optimization model that assesses the costs of 
various adaptation strategies against flooding damages and potential 
impacts from regional changes in sea level. It chooses the least-cost 
strategy for each of over 12,000 coastal segments across the globe in the 
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Dynamic Interactive Vulnerability Assessment (DIVA) database89 after 
taking into account local physical and socioeconomic characteristics. 
CIAM’s potential adaptation strategies are specified as a combination of 
(1) a choice on retreating inland from the coastline, protecting coastal 
communities and infrastructure, or remaining in place without taking 
any adaptive actions and (2) a choice on the degree of investment in 
coastal defence against several different storm surge return periods 
conditional on protection being decided on. The DIVA database pro-
vides generalized extreme value distributions that define these return 
periods for each individual segment.

CIAM is a deterministic model. All uncertainty in coastal damages is 
therefore the result of uncertain sea-level projections that arise owing 
to GIVE’s probabilistic emission scenarios and climate and sea-level 
model parametric uncertainties that we sample.

Building energy expenditures. The energy demand damage function 
is based on the results of Clarke et al. 201820, a study that used the 
Global Change Analysis Model (GCAM)90,91 to project how climate 
change affects regional building energy demand through 2100. GIVE’s 
damage functions relate each degree of global temperature rise to a 
change in regional energy expenditures, expressed as a proportion 
of that region’s GDP. We derive these damage functions using output 
data provided by the authors of ref. 20. That output includes, for each 
of the 12 GCAM regions, the net change in regional energy expendi-
tures as a proportion of regional GDP at various temperature levels 
(varying over both time and scenario). Reference 20 notes that this 
relationship is approximately linear in temperature. For each of the 
12 GCAM regions, we fit a linear function to these datapoints by  
regressing the net change in energy expenditures as a proportion of 
GDP on global temperature rise relative to the preindustrial period. 
We assume the intercept is zero to ensure the resulting function yields 
no change in energy expenditures at zero temperature rise. This yields 
a coefficient for each region, denoted β j

E  (see Supplementary Infor-
mation Table 2 for these values). Energy damages for each country i 
located in region j are then calculated using the corresponding coef-
ficient, as

β

Change in energy expenditures as a proportion of GDP

= × (Temperature rise) .
(1)

i t

j
E

t

,

We multiply this energy expenditure share by country-level GDP to 
generate damages in dollars.

Reference 20 did not feature any explicit consideration of uncertainty, 
so we do not include uncertainty in this damage function. Uncertainty 
in energy-related damages remain, however, owing to GIVE’s uncertain 
temperature projections and GDP trajectories.

Temperature-related mortality. The mortality damage functions are 
based on the results of Cromar et al. 202219, in which a panel of health 
experts was convened to conduct a meta-analysis of peer-reviewed 
research studying the impacts of temperature on all-cause mortality 
risk, which includes human health risks related to a broad set of health 
outcomes including cardiovascular, respiratory and infectious disease 
categories. The meta-analysis combined studies to produce region-
ally disaggregated estimates of the effects on all-cause mortality of 
each degree of warming across a broad range of baseline tempera-
tures, including both increased mortality risk at high temperatures 
and reduced risk at cooler temperatures. This produced, for each 
of 10 regions, a point estimate (and its standard error) representing 
the net change in all-cause mortality risk per degree Celsius of glob-
ally averaged surface temperatures (see Supplementary Information  
Table 1).

To reflect uncertainty in these estimates, we sample these parameters 
β j

M for region j from a normal distribution centred on the point estimate 

and set the standard deviation equal to the reported standard error. 
We then compute temperature-induced excess deaths in country i in 
region j as

β

(Temperature-induced excess deaths)

= × (Temperature rise) × (Baseline mortality) ,
(2)

i t

j
M

t i t

,

,

where we calculate baseline mortality as the regional population level 
times its baseline mortality rate from the RFF-SPs,

(Baseline mortality)

= Population × (Baseline mortality rate) .
(3)

i t

i t i t

,

, ,

We monetize these excess deaths using the value of a statistical life 
(VSL) as follows:

(Monetized excess mortality)

= VSL × (Temperature−induced excess deaths) .
(4)

i t

i t i t

,

, ,

The baseline VSL value for 2020 for the USA (denoted VSLUS,2020
base ) is 

derived using EPA’s 1990 Guidance value of $4.8 million and adjusted 
for income growth and inflation, resulting in a 2020 US VSL of $10.05 
million in 2020 dollars44 (see data explainer notebook in the replication 
code for this paper for the full derivation). We then base the VSL for 
country i in year t on the EPA’s baseline VSL for 2020, adjusted for country i’s 
GDP per capita in year t, as

VSL = VSL ×
GDP per capita

GDP per capita
, (5)i t

i t

ε

, US,2020
base ,

US,2020











where ε = 1 represents the income elasticity of the VSL. The primary 
function of ε is to adjust the US VSL to other countries and at uncertain 
future income levels. We use a unit elasticity, which is in line with the 
central tendency of values recommended in the literature for such 
cases92–95.

Agriculture. The agricultural damage function is based on Moore et al. 
201718, which estimated damages in two steps using: (1) a meta-analysis 
of published studies of the effects of temperature, rainfall and CO2 on 
crop yields that builds on previous work96,97, and (2) a computable gen-
eral equilibrium model to estimate the economic welfare consequences 
of these yield shocks while accounting for trade patterns and supply 
and demand adjustments in agricultural markets across 16 regions.

Reference 18 presents results in the form of damage functions that 
directly relate global mean surface temperature increase to welfare 
change in economic terms. Their study presents three different param-
eterizations of these damage functions to characterize uncertainty: a 
central, low and high estimate.

They estimated each of these three parameterizations for 1, 2 and 
3 degrees Celsius of temperature increase, resulting in three piece-
wise linear damage functions for each region (see Supplementary 
Information Fig. 1). To address uncertainty as part of our Monte Carlo 
sampling framework, we sampled a value from a triangular distribu-
tion with lower bound 0, mode 0.5 and upper bound 1 for each draw. 
Assigning the low, central and high damage functions to each of these 
values respectively, the two nearest functions were linearly interpo-
lated to produce the damage function for that draw, also interpolating 
linearly between the resultant 1-degree Celsius value and the origin, 
since damages at zero temperature increase can be assumed to be 
zero. Importantly, this uncertainty sampling scheme preserves the 
covariance between regions arising through connections in the global 
trade network.



Lastly, we incorporated their results into our model via the equation

σ f TAgPctCost =
GDP per capita

GDP per capita
( ),i t i

i t

i
i t,

,
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where AgPctCosti,t is the damage in the agricultural sector as a propor-
tion of GDP in region i at time t; σi is the share of agriculture in GDP 
in 1990 in region i; ϵ = 0.31 is the income elasticity of the agriculture 
share in GDP98; Tt

 is global average surface temperature increase;  
and fi is the piecewise linear function for region i resulting from the 
steps described above.

Discounting
Our discounting approach directly follows from NASEM recommen-
dations as developed in a previous work1,31. Given the long residence 
time of CO2 in the atmosphere, the damages from CO2 emitted today 
persist for centuries. These future damages must be converted to 
present dollar equivalents using an appropriate discount rate. The 
climate economics literature typically uses Ramsey-style discounting 
that links the discount rate to future economic growth99. This linkage 
leads to the Ramsey-like equation for the discount rate over time, 
denoted rt: rt = ρ + ηgt, where ρ is the rate of pure time preference, gt 
is the average rate of consumption growth from the year of the emis-
sions pulse (described in the next section) to year t, and ηgt reflects the 
extent to which society discounts damages because future individuals 
are relatively wealthier. More specifically, η reflects how much the 
marginal value of consumption declines as consumption increases 
(a 1% increase in consumption corresponds with a η% decline in the 
marginal value of a dollar).

We evaluate the stochastic discount rate for each realized path of 
uncertain consumption growth (rt = ρ + ηgt), explicitly and structurally 
modelling the uncertainty in discount rates that is often summarized 
by a declining term structure100. This uncertainty in the discount rate 
leads to a stochastic discount factor (SDFt) used to discount future 
marginal climate damages. The SDFt can also be written equivalently 
in terms of relative consumption levels54,101 as

ρ
c

c
SDF =

1
(1 + )

. (6)t t
t

η

−2020
2020

−










Here ct is world average per capita consumption in year t. We use this 
SDFt to discount marginal climate damages (MDt) to a present value.

Whereas the climate economics literature routinely uses a 
Ramsey-like approach to discounting32,54,101–105, prior estimates by 
the US IWG disconnected discounting and future economic growth 
by using a constant, deterministic discount rate. That approach 
implicitly assumes that η = 0, corresponding to no linkage between 
consumption growth and discounting as well as zero aversion to risk. 
Our approach re-establishes the Ramsey-like link between growth 
and discount rates. We use ρ and η values that were empirically 
calibrated3 to be consistent with the RFF-SPs and evidence on the 
observed behaviour of interest rates48. This procedure also produces 
near-term risk-free discount rates (defined as the average risk-free 
discount rate over the first decade of the time horizon) consistent 
with the desired values, such as those reported in Fig. 1. Our preferred 
SC-CO2 estimate corresponds to a near-term 2% rate, which is consist-
ent with real risk-free interest rates over the last 30 years, and uses 
ρ = 0.2% and η = 1.24 (refs. 3,31). The (ρ, η) values corresponding to 
the alternative near-term rates of 1.5%, 2.5% and 3% are (0.01%, 1.02), 
(0.5%, 1.42) and (0.8%, 1.57), respectively.

The Ramsey-like form for the discount rate is a standard approach to 
value marginal impacts and account for their risk amid uncertainty in 
future payoffs and consumption levels in the discounted expected utility 
framework53,54. In that framework, the value of the η parameter reflects 

the degree of risk aversion as well as the inverse of the intertemporal 
elasticity of substitution. That framework is also used for benefit–cost 
analysis of policy and regulatory analysis under uncertainty, as it quan-
tifies the risk premium associated with uncertainty and risk aversion 
in the valuation of a marginal emission of CO2. Although the Ramsey 
framework is widely used, other considerations for decision-making 
under uncertainty in the context of climate change, such as the role of 
epistemic uncertainty and alternative preference structures including 
ambiguity aversion, have also been proposed106. We use the discounted 
expected utility framework because it is the most established and widely 
used framework for regulatory and policy analysis107,108.

Estimating the SC-CO2

We estimate the SC-CO2 in a three-step calculation process. In the first 
step, we run the GIVE model out to the year 2300 for two separate cases: 
a ‘baseline’ case and a ‘perturbed’ case that adds an extra 0.1 MtC pulse 
of CO2 emissions in the year 2020 and is otherwise identical. In the 
second step, we calculate marginal climate damages in year t as the 
difference in modelled damages per tonne between the pulse and 
baseline runs as

∑ ∑MD = (Damages with pulse − Baseline damages ), (7)t
d r

R

t d r t d r
=1

4

=1
, , , ,

d

where we aggregate over each of the four damage sectors d at their 
respective geographic resolutions (that is, countries or regions) r.

In the third and final step, we calculate the SC-CO2 by discounting 
these marginal damages using the stochastic discount factors SDFt 
from equation (5) above and then aggregate them over time into a 
single present value

∑SC−CO = SDF × MD . (8)
t

t t2
=2020

2300

For our preferred results, we calculate 10,000 unique SC-CO2 esti-
mates. For each estimate, we sample the RFF-SP scenarios to account 
for uncertainties in global CO2, CH4 and N2O emission trajectories in 
addition to country-level population and GDP growth levels. We also 
sample parametric uncertainties in the FaIR and BRICK models as well 
as the agricultural and temperature-related mortality damage functions 
(Extended Data Table 2). As described above, our preferred SC-CO2 
estimate uses discounting parameters of ρ = 0.2% and η = 1.24 for a 
near-term rate of 2%.

When we report partial SC-CO2 estimates for a given damage sector, 
we follow the estimation procedure outlined above, but only include 
the impacts from that individual sector when calculating marginal 
damages in equations (7), (8). We normalize our estimates on the basis 
of emission pulse size and report all results throughout the paper in 
units of 2020 US dollars per metric tonne of CO2. We use the implicit 
GDP price deflator from the US Bureau of Economic Analysis to convert 
values to 2020 dollars.

We typically summarize the distribution of our 10,000 SC-CO2 esti-
mates by its mean, that is, E[SC-CO2], where the expectation operator is 
taken jointly over all uncertain parameters determining marginal dam-
ages (MDt) and the stochastic discount factor (SDFt). This calculation 
is consistent with economic theory for pricing investments and other 
actions with uncertain payoffs, and therefore properly accounts for 
the risk premium in the valuation of a marginal emission of CO2 owing 
to the many compounding uncertainties we model46.

Software
All our results are computed using open-source software tools. We use 
the Julia programming language for the entire replication code of this 
paper109. All models used in this study are implemented on the Mimi.jl 
computational platform for integrated assessment models8.
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a: 3.0% near-term discount rate

b: 2.5% near-term discount rate
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Extended Data Fig. 1 | SC-CO2 distributions are robust to different damage 
function specifications ($ per tCO2). Distributions of the SC-CO2 using the 
damage functions from GIVE (orange, our preferred specification), DICE-
2016R32 (blue), and Howard & Sterner33 (red) for near-term discount rates of 
1.5%, 2.0%, 2.5% and 3.0%. All results use the RFF-SP scenarios, a stochastic 
growth-linked discounting framework, and sample uncertain climate, sea-level 

and damage function parameters, including for DICE-2016R and Howard & 
Sterner33 damage functions. The DICE-2016R damage function is based on ref. 32 
(see page 2 of that work’s supporting information)32. The Howard & Sterner 
damage function is based on the base coefficient in their table 2, specification (8).  
All SC-CO2 values are expressed in 2020 US dollars per metric tonne of CO2.
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Extended Data Fig. 2 | Discounted marginal damages by year, preferred 2% 
near-term discount rate case. Solid line represents mean discounted 
marginal damages for a one-tonne CO2 emissions pulse in 2020, dotted line 

represents the median, with darker shading spanning the 25%–75% quantile 
range and lighter shading spanning the 5%–95% quantile range. All SC-CO2 
values are expressed in 2020 US dollars per metric tonne of CO2.



Extended Data Table 1 | Mean SC-CO2 values (with 5th–95th quantile ranges), by damage function and discount rate ($ per tCO2)

Near-term discount rate
Damage function 1.5% 2% 2.5% 3%

GIVE sectoral $308
($94–$626)

$185
($44–$413)

$118
($23–$280)

$80
($12–$197)

DICE-2016R $275
($35–$690)

$152
($20–$390)

$91
($12–$233)

$59
($8–$149)

Howard & Sterner $370
($106–$828)

$205
($56–$468)

$123
($33–$286)

$80
($22–$183)

Our preferred estimates correspond to the GIVE sectoral damage functions at a 2% near-term discount rate, shown in bold. All results use the RFF-SP scenarios, a stochastic growth-linked  
discounting framework, and sample uncertain climate, sea level, and damage function parameters, including for DICE-2016R and Howard & Sterner33 damage functions. The DICE-2016R  
damage function is based on Nordhaus 2016 (see page 2 of that work’s supporting information)32. The Howard & Sterner damage function is based on the base coefficient in their table 2,  
specification (8). All SC-CO2 values are expressed in 2020 US dollars per metric tonne of CO2.
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Extended Data Table 2 | Sources of SC-CO2 uncertainty

Model Component Uncertainty Source

Global CO2, CH4, and N2O emission trajectories RFF-SPs3

Country-level GDP growth rates RFF-SPs3,10

Country-level population RFF-SPs9

FaIR climate-carbon cycle model 2,237-member constrained ensemble of the uncertain parameters (sampled with replacement) 
from IPCC AR6 report74

BRICK sea-level model 10,000-member ensemble of the uncertain parameters derived from a Bayesian calibration 
framework15,16

Agriculture damage function Uncertain damage coefficient distributions based on Moore et al.18

Temperature-related mortality damage function Uncertain damage coefficient distributions based on Cromar et al.19

The left column shows the inputs and components of the GIVE model that contribute to uncertainty in the SC-CO2. The right column briefly describes these uncertainties and their sources. 
Refs. 3,9,10,15,16,18,19,74.
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