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Abstract

Land use and land cover (LULC) terrain in Ghana has undergone profound changes over the past years emanating 
mainly from anthropogenic activities, which have impacted countrywide and sub-regional environment. This study 
is a  comprehensive analysis via integrated approach of geospatial procedures such as Remote Sensing (RS) and 
Geographic Information System (GIS) of past, present and future LULC from satellite imagery covering Ghana’s 
Ashanti regional capital (Kumasi) and surrounding districts. Multi-temporal satellite imagery data sets of four dif-
ferent years, 1990 (Landsat TM), 2000 (Landsat ETM+), 2010 (Alos and Disaster Monitoring Constellation-DMC) 
and 2020 (SENTINEL), spanning over a 30-year period were mapped. Five major LULC categories – Closed Forest, 
Open Forest, Agriculture, Built-up and Water – were delineated premised on the prevailing geographical settings, 
field study and remote sensing data. Markov Cellular Automata modelling was applied to predict the probable LULC 
change consequence for the next 20 years (2040). The study revealed that both Open Forest and Agriculture class 
categories decreased 51.98 to 38.82 and 27.48 to 20.11, respectively. Meanwhile, Built-up class increased from 4.8% 
to 24.8% (over 500% increment from 1990 to 2020). Rapid urbanization caused the depletion of forest cover and 
conversion of farmlands into human settlements. The 2040 forecast map showed an upward increment in the Built-
up area up to 35.2% at the expense of other LULC class categories. This trend from the past to the forecasted future 
would demand that judicious LULC resolutions have to be made to keep Ghana’s forest cover, provide arable land for 
farming activities and alleviate the effects of climate change.
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Introduction

Land use and land cover (LULC) dynamics globally 
are vital landscape processes capable of modifying the 
fluxes of biotic and abiotic components and how they in-
teract with each other (Ronchi 2018; Bekele et al. 2019). 
Anthropogenic modifications of the earth’s surface are 
reckoned to have reached unparalleled magnitude, and 
the alterations in land use and land cover (LULC) are 
estimated as very significant globally (Melese 2016; 
Zhang et al. 2015). 

LULC change studies are widely used to moni-
tor human-induced changes in the environment. Many 
studies conducted all over the world acknowledge that 
land use and land cover change (LULCC) is the result 
of complex anthropogenic-environmental interactions 
(Goswami et al. 2019; Issa 2018; Qader et al. 2016). 
Kleemann et al. (2017) advance that high interdepend-
encies in social-ecological systems make it difficult to 
identify the main drivers. They acknowledge that the 
key drivers of LULC changes, including indirect (un-
derlying) drivers, which cannot be easily determined by 
spatial or economic analyses, are essential for land use 
planning especially in developing countries. Changes 
in land cover have a direct impact on forest ecosystem 
goods and services (Navarro-Cerrillo et al. 2019). For 
example, agricultural extensification due to increases 
in global food demand and production such as oil palm 
plantation expansion constitutes a  major emerging 
challenge for forest conservation, particularly in the 
Amazonia and other tropical forest regions (Glinskis 
and Gutiérrez-Vélez 2019). Acheampong et al. (2018) 
add that the surging levels of urbanization in the world 
have added to the loss of forests and agricultural lands 
in many exurban zones, and in many cases, worsened 
poverty levels of smallholder farmers who depend on 
subsistence farming. 

Remote Sensing (RS) and Geographic Information 
System (GIS) are essential tools in obtaining accurate 
and timely spatial data of LULC, as well as analysing 
the changes in a  study area (Pervez et al. 2016; Sriv-
astava et al. 2013). RS images efficiently record LULC 
conditions and offer a tremendous source of data, from 
which updated LULC information and changes can be 
extracted, analysed and simulated efficiently in the de-
tection and monitoring of land uses at different scales 
(Rai et al., 2017; Singh et al., 2017). GIS on the other 

hand offers a flexible environment for collecting, stor-
ing, displaying and analysing digital data necessary for 
change detection (Panwar and Malik 2017). Although 
there are several methods for detecting and analysing 
LULC changes (Lu et al. 2004; Ayele et al. 2018), RS and 
GIS approaches make it possible to effectively monitor 
and forecast the trends in LULC changes via the study 
of historical remotely sensed imagery. This could offer 
a foundation for systematic and effective land use plan-
ning, management and ecological restoration for socio-
economic development (Liping et al. 2018). 

Several methods for forecasting LULC changes 
are widely available in literature. These methods differ 
based on purposes, methodologies, geographic areas of 
the analysis, assumptions and both the source and type 
of data employed (Michetti and Zampieri 2014). The an-
alytical equation-based models (Shamsi 2010) are often 
employed for estimating LULC changes. There are also 
the statistical models (Aitkenhead and Aalders 2009; 
Hyandye 2015), Markov models (Guan et al. 2019), 
multi-agent models (Ralha et al. 2013), expert system 
models (Stefanov et al. 2001), cellular models (Singh 
et al. 2015) and hybrid models (Subedi et al. 2013). 
Currently, the most extensively used models in LULC 
change monitoring and prediction are the cellular and 
agent-based models or the mixed model based on these 
two types of models (Sohl and Claggett 2013; Zhao and 
Peng 2012; Stevens and Dragićević 2007). The Mark-
ov chain and Cellular Automata (CA-Markov) model, 
one of the mixed models, is the hybrid of the Cellular 
Automata and Markov models. This model effectively 
combines the advantages of the long-term predictions of 
the Markov model and the capability of the Cellular Au-
tomata (CA) model to simulate the spatial variation in 
a complex system, and this mixed model can effectively 
simulate land cover changes (He et al. 2018). The use 
of the CA-Markov model in LULC change studies has 
advantages such as its dynamic simulation capability; 
high efficiency with data, scarcity and simple calibra-
tion; and ability to simulate multiple land cover types 
and complex patterns (Hyandye and Martz 2017; Me-
marian et al. 2012). Many researchers have applied the 
CA-Markov model to monitor land use and landscape 
changes and predictions (Etemadi et al. 2018; Rimal et 
al. 2017; Mansour et al. 2020; Mosammam et al. 2017). 

This study appraises LULC from 1990–2020 and 
projects into the future (2040) through geospatial analy-
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sis in the mid zone of Ghana. This study offers vital in-
formation for comprehensive countrywide and local en-
vironment change and sustainable development, and use-
ful for planning and management for decision-makers. 

Study Area and Data

The study area is in the Ashanti Region, located central-
ly in the middle belt of Ghana and it lies within longi-
tude 1º58’W and 1º11’W and latitude 6º22’N and 7º11’N. 
This study focuses on the capital Kumasi and its adjoin-
ing districts, as seen in Figure 1. The adjoining districts 
include the following: Ejisu Juaben, Afigya Kwabre, 
Atwima Kwanwoma, Kwabre, Sekyere East, Atwima 
Nwabiagya and Bosomtwe. Ashanti Region has been 
the most populous region in Ghana in all the census 
years from 1960 to 2010 (GSS, 2013). The population 
of the region is projected at 5,792,200 in 2019 and falls 
within a semi-deciduous forest zone undergoing degra-
dation consequently on anthropogenic actions. The cli-

mate conditions in the study area features both wet and 
dry conditions with constant temperature throughout 
the course of the year, an average of 1400 mm of rain 
per year. The wet climate starts from March to Novem-
ber and the dry continues till February. The topography 
of the study area is undulating with a  number of riv-
ers running through the study area, and has an average 
elevation of 250 m above Mean Sea Level (MSL). The 
main source of potable water for Kumasi populace is 
from the Owabi and Barekese head works. 

This study is based on the data sources listed in Ta-
ble 1. It has been categorized into two: EO (earth obser-
vation) data and reference data, and has employed multi-
temporal satellite images of Landsat, TM (thematic map-
per) and ETM+(enhanced thematic mapper plus) images 
of scene 194/55 and 194/56 acquired in the years 1990 
and 2000, 2010 ALOS of three scenes (Scene 38, 39 and 
50) and one scene of 2010 DMC images and one scene of 
2020 Sentinel image. The Landsat and Sentinel data were 
downloaded from the USGS (U.S. Geological Survey) 
database using its Glovis facility where the ALOS and 

Figure 1: Map of Ghana showing the study area (Ashanti region, Ghana)
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DMC were obtained from the Forestry Commission of 
Ghana. These images were selected on the basis of avail-
ability, season and cloud coverage. The reference data 
include 1990 and 2000 Land Cover maps, topographical 
maps and aerial photographs of the study area. 

Table 1. Data Acquisition and Source

EO Data Acquisi-
tion date

Resolu-
tion Source

LandSat TM December, 
1990 30 m USGS EROS 

Centre

LandSat ETM+ March, 
2000 30 m USGS EROS 

Centre
DMC (Disaster 
Management 
Constellation)

January, 
2010 22 m Forestry Commis-

sion, Ghana

ALOS Image January, 
2010 10 m Forestry Commis-

sion, Ghana

Sentinel Image January, 
2020 10 m USGS EROS 

Centre
Reference Data 

Topographical 
Map 2012 1:50,000 Survey & Mapping 

Division, Ghana
Aerial 
Photographs 2010 1:10,000 Survey & Mapping 

Division, Ghana
Land Cover 
Map

1990 & 
2000 1:10,000 CERGIS, Univer-

sity of Ghana

Methodology

The steps undertaken in this study include 
image pre-processing, image classifica-
tion, change detection and modelling, pre-
dicting change and validation. These steps 
are summarized in the flow chart display 
in Figure 2. 

Pre-processing

Pre-processing is very important when it 
comes to analysing LULC change, as er-
rors attributed to imaging sensors, atmos-
pheric effects and curvature of the Earth, 
if not corrected, can lead to false results 
(Parsa et al. 2016). The individual bands 
of the downloaded satellite images (1990 
and 2000 LandSat and 2020 Sentinel) 

were merged into three different composite images. 
The 2010 DMC, the individual scenes of Landsat im-
ages were subsequently resampled to 10 m resolution 
for better change detection analysis. The images were 
subsequently enhanced using Histogram Equalization. 
The 1990 and 2000 Landsat images were found to be 
hazy and were corrected. 

Image Classification and Accuracy Assessment

To ensure quality results from change detection, a total 
of 160 ground truth data were taken at random evenly 
distributed on site. Using a  total of 60 training points 
coupled with the local knowledge and Google Earth im-
ages, the 2020 image were classified and the remaining 
100 points were used to assess the accuracy of the im-
age classification. A supervised classification based on 
maximum likelihood was employed to classify the study 
area into five (5) land use categories: (1) Close Forest; 
(2) Open Forest; (3) Agriculture Lands; (4) Built-up; and 
(5) Water. The 2010 ALOS images were classified us-
ing the 2010 aerial photographs covering the study area, 
while the 2000 and 1990 Landsat images were conduct-
ed based on the land cover Map of Ghana obtained from 
CERGIS and prior “local knowledge” of the area. The 
various classified scenes of ALOS, DMC and Landsat 
images were then mosaicked into the individual classi-
fied maps (1990, 2000 and 2010 maps). All the various 
classified maps were later subset to our area of interest 

Figure 2: Flow chart depicting the steps undertaken in the geospatial 
analysis of land use/land
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(study area). Confusion matrix and kappa statistics were 
used to assess the accuracy of the 2020 classified image. 

There were no available ground truth data to access the 
accuracy of the 1990, 2000 and 2010 classified images, 
however, the classification was based on the available 
land cover maps, aerial photos and local knowledge of 
the study area.

Table 2. Land use classes

Land use 
Class Feature

Close Forest
All land with woody vegetation consistent with thresholds used to define Forest Land in the national greenhouse 
gas inventory. It also includes systems with a vegetation structure that currently fall below, but in situ could 
potentially reach the national threshold values used to define the Forest Land category in Ghana.

Open Forest

Agriculture
Cropped land, including rice fields, and plantation where the vegetation structure falls below the thresholds used 
for the Forest Land category. Land where over 50 of any defined area is used for agriculture, this may be currently 
cropped or in fallow and may include areas for grazing of livestock.

Built Up All the developed land, including social utilities such as transportation infrastructure (roads and highways), built 
up areas, bare grounds and human settlements of any size.

Water These include lands that are covered or saturated by water for all or part of the year (for example, peatlands). It 
also includes reservoirs and natural rivers and lakes.

Table 3A. Quantification of Land Cover Classes

LULC CLASS
1990 2000 2010 2020

area (ha) area (%) area (ha) area (%) area (ha) area (%) area (ha) area (%)

Close Forest 39,748.81 13.96 31,717.82 11.14 41,137.82 14.45 41,116.82 14.44

Open Forest 148,023.86 51.98 132,088.89 46.38 146,020.79 51.27 110,549.87 38.82

Agriculture 78,262.61 27.48 90,842.19 31.90 52,497.69 18.43 57,279.93 20.11

Built Up 13,596.11 4.77 24,854.89 8.73 39,620.82 13.91 70,638.63 24.80

Water 5,148.85 1.81 5,276.45 1.85 5,503.12 1.93 5,194.99 1.82

Grand Total 284,780.24 100.00 284,780.24 100.00 284,780.24 100.00 284,780.24 100.00

Table 3B. Error Matrix of Image Classification

Class Refe-
rence

Classi-
fied

Num-
ber

Produ-
cers Users

name totals totals correct accuracy accuracy
– – – – (%) (%)

Close Forest 17 20 15   88.24   75.00
Open Forest 33 30 25   75.76   83.33
Agriculture 20 20 14   70.00   70.00
Built Up 25 25 21   84.00   84.00
Water   5   5   5 100.00 100.00

 Totals 100 100 80

 Overall Classification Accuracy  
= 80.00%

Table 3C. Kappa Statistics 

KAPPA (K^) STATISTICS

Overall Kappa Statistics = 0.7375

Conditional Kappa for each Category

Close Forest 0.6988

Open Forest 0.7512

Agriculture 0.6250

Built Up 0.7867

Water 1.0000
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Change Detection Analysis

The study employed a Post-Classification Change De-
tection in assessing the LULCC that have taken place 
over the thirty year period (1990–2020). Using LCM 
module of Idrisi Selva, a  cross-tabulation of the two 
thematic maps of the same dimensions at a time can be 
analysed. With the 1990, 2000, 2010 and 2020 thematic 
maps as input to LCM, the following results were gener-
ated for the three time epochs (1990–2000, 2000–2010, 
2010–2020): 1) net gains or losses in hectares (ha) and 
percentages (%) for each land-cover category; (2) con-
tributors to the net change by each land-cover type; 
(3) change maps; (4) change matrices; and (5) matrices 
of transition probabilities to provide information on the 
probability associated with a  land-cover class either 
remaining unchanged or changing to one of the other 
classes. To calculate the annual rate of LULC change, 
the following equation according to Menon and Bawa 
(1997) was adopted: 

	

where: 
r 	 – the rate of LULC change,
A1, A2 	– �the area of the first epoch and second epoch, 

respectively,
t1, t2 	 – �the year of the first epoch and second epoch, 

respectively.

Moreover, the extent of area that remained un-
changed can be calculated as the summation of the area 
in the diagonal of the LULC Change matrix (Tab. 4A, 
4B and 4C) and can be given in the formula A and the 
area coverage in percent can also be given in formula B:

	 	 (A)

	 	 (B)

where: 
AU 	 – �the total Area that remained un-

changed,
P% 	 – �the percentage of unchanged LULC 

area,
A11, A22, A33, A44 	– �the area in the diagonals of each 

LULCC matrix,
AT 	 – the total area of the study area.

Modelling and Predicting LULC Change

In modelling and predicting LULC change, the study 
adopted the use of Markov Chain (MC) analysis and 
Cellular Automata (CA-Markov) to predict the land-
cover change. Markov Chain analysis determines the 
probability of land-cover changing from one period to 
another by developing a transition matrix between time 
t1 and time t2. Cellular Automata (CA) is integrated 
with Markov Chain analysis to deal with the spatial 
distribution issues Markov Chain Model faces. The CA 
component of the CA-Markov model allows the tran-
sition probabilities of one pixel to be a  function of its 
neighbouring pixels. CA-Markov models and predicts 
the changes of several classes of cells by using the fol-
lowing generated outputs: a Markov transition matrix, 
a ‘suitability’ map, and a neighbourhood filter (Eastman 
2009). 

Sang et al. (2011), adds that the Markov model ap-
plication in forecasting LULCC emanates from its abil-
ity to compute different and transition states among 
different land uses. Subedi et al. (2013) gives the homo-
geneous Markov model for forecasting LULCC math-
ematically as Eq. 1: 

	 	

(1)

were:
L(t+1), L(t) 	 – �the conditions of LU in t and t+1 periods, 

respectively, 
Pij 	 – �a  matrix of transition probability in one 

condition. 

Muller and Middleton (1994) puts the Markov chain 
(Eq. 2) from the distribution of LU in the commence-
ment (Mt) and the completion of a discrete time period 
(Mt+1) in addition to transition matrix (MLc), which 
indicates the variations that have happened in the envi-
sioned time period. Using this assumption, LU change 
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Table 4A. 1990–2000 Change Matrix

LULC Class
1990  

Close Forest Open Forest Agriculture Built Up Water 2000 Total

– – – – – –

2000

Close Forest 14,447.53 12,330.37 4,819.09 15.25 105.58 31,717.82

Open Forest 20,565.11 81,175.17 29,881.12 425.91 41.58 132,088.89

Agriculture 4,562.07 47,573.25 34,104.43 4,580.01 22.43 90,842.19

Built Up 113.95 6,719.35 9,445.44 8,572.64 3.51 24,854.89

Water 60.15 225.72 12.53 2.3 4,975.75 5,276.45

  – – – – – –

 1990 Total 39,748.81 148,023.86 78,262.61 13,596.11 5,148.85 284,780.24

Table 4B. 2000–2010 Change Matrix

LULC Class
2000  

Close Forest Open Forest Agriculture Built Up Water 2010 Total

  – – – – – –

2010

Close Forest 12492.73 18097.74 10425.21 90.99 31.15 41137.82

Open Forest 17356.08 87745.69 40505.66 374.88 38.48 146020.79

Agriculture 1706.28 23004.45 26193.81 1580.99 12.16 52497.69

Built Up 66 3162.37 13588.85 22801.35 2.25 39620.82

Water 96.73 78.64 128.66 6.67 5192.41 5503.11

  – – – – – –

 2000 Total 31717.82 132088.89 90842.19 24854.88 5276.45 284780.23

Table 4C. 2010–2020 Change Matrix

LULC Class
2010  

Close Forest Open Forest Agriculture Built Up Water 2020 Total

  – – – – – –

2020

Close Forest 13,204.16 23,611.25 4,136.11 124.84 40.46 41,116.82

Open Forest 15,664.31 75,354.57 18,980.52 442.09 108.38 110,549.87

Agriculture 8,049.39 32,011.16 15,242.33 1,867.73 109.32 57,279.93

Built Up 4,219.96 15,043.81 14,138.73 37,186.16 49.97 70,638.63

Water 0 0 0 0 5,194.98 5,194.98

  – – – – – –

 2010 Total 41,137.82 146,020.79 52,497.69 39,620.82 5,503.11 284,780.23
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is projected based on the projected likelihoods and in 
the transition matrix:

	 	

(2)

Validation is important in modelling and predicting 
LULC maps. In order to validate the LULC prediction 
given by the CA-Markov model, a comparison is done 
between the actual LULC map and the predicted LULC 
map of the same year. Kappa statistics values are used 
to assess the agreements between the forecasted LULC 
map and the actual LULC map based on Kno (Kappa 
for no ability), Klocation (Kappa for location) and 
Kstandard (Kappa index). Kno indicates the proportion 
classified correctly relating to the expected proportion 
classified correctly by a  simulation with no ability to 
specify accurately quantity or location. Klocation indi-
cates how well the grid cells are located on the land-
scape. Kstandard (Kappa index) compares the observed 
proportion correct to the expected proportion, corrected 
due to chance (Pontius 2000).

The 2010–2020 land-cover maps were first used as 
inputs in Markov module to generate a transition matrix 

and a set of conditional probability images between the 
two dates of the thematic maps. These resulting outputs 
were later loaded in the CA-Markov module to generate 
the 2020 predicted map. Afterwards, the predicted 2020 
land-cover map was compared with the actual land-cov-
er map of 2020 for validation. Following the validation, 
the 1990–2020 land-cover maps were used to predict 
the 2040 land-cover map. 

Results

Image Classification and Accuracy Assessment

The study area was classified into five (5) LULC classes 
based on supervised classification: Closed Forest, Open 
Forest, Agriculture, Built-up and Water. Figure 3 shows 
the four thematic maps generated for this study: 1990, 
2000, 2010 and 2020 LULC Maps. Accuracy assess-
ment is essential, and particularly so, when using post-
classification change detection methods (Foody 2002; 
Behera et al. 2012). Accuracy assessment of the LULC 
Maps produced from the 1990, 2000, 2010 and 2020 
were performed and assessment report was generated 
(Tab. 3B and 3C). Total classification accuracy of 80% 
was attained. Overall Kappa statistics of 0.7375 was re-
alized for 2020 LULC. The Ghana Forest Preservation 
Program –  report (FPP-Ghana, 2013) ground truthing 
and verification data was used for this activity. Ac-
curacy assessments for 1990, 2000, 2010 images were 
undertaken through topographical map, aerial photo-
graph, land cover map, digitized topographical data 
photographs, data and reference points from statutory 
bodies such as the Forestry Commission and Survey 
Department.

LULC maps assessment 

Figure 3A, B, C and D indicate that the LULC maps for 
1990, 2000, 2010 and 2020 show considerable change 
from one category (class) to another category. Table 3A 
shows the extent of the area of individual LULC in hec-
tares (ha) and expressed in percentages. 

The land use/cover map for 1990 epoch (Fig.  3A) 
shows Close and Open forests constituting a little over 
66% of the LULC; Agriculture is the next dominant 
LULC category; Built-up is shown as the second least 
category constituting less than 5% of the LULC and 
Water share of the LULC aggregating to 1.8% main-

Table 4D. Extent of Unchanged/Change LULC Area for the 
three epochs

Epoch
Changed Unchanged

area (ha) area (%) area (ha) area (%)
1990–2000 141,504.72 49.69 143,275.52 50.31
2000–2010 130,354.25 45.77 154,425.99 54.23
2010–2020 138,598.03 48.67 146,182.2 51.33

Table 4E. Annual Rate of LULC Change

LULC Class 1990–2000
(%)

2000–2010
(%)

2010–2020
(%)

Close Forest –2.0   3.0   0.0

Open Forest –1.1   1.1 –2.4

Agriculture   1.6 –4.2   0.9

Built Up   8.3   5.9   7.8

Water   0.2   0.4 –0.6
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A B

C D

Figure 3. Image classification maps of the study area at different time
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ly from the lake Bosumtwi, the Barekese and Owabi 
Headworks and supplying rivers and streams. 

Figure  3B shows the LULC map for 2000 with 
Close and Open forests reducing to 57%, Agriculture 
gains marginally from 27.5% in 1990 to 32%; Built-up 
almost doubles from 4.8% to 8.7% after the ten-year in-
terval. Water part of the LULC remains constant.

The land use/cover map for 2010 (Fig. 3C) shows 
Close and Open forests rebound to the 1990 figures 
as a  result of massive reforestation. Agriculture loses 
and drops to 14%; Built-up continues to surge at the 
expense of Agriculture. Water share of the LULC re-
mains constant.

Figure 3D shows the LULC map for 2020 in which 
Close and Open forests dipping to 53%; Agriculture 
gains marginally from 18% to 20%; Built-up surge con-
tinues from 14% to 25% after the ten-year interval. Wa-
ter share of the LULC remains fairly constant.

LULC Change Matrix 

The Table  4A, 4B and 4C show the extent of change 
in the area of the individual land cover categories in 
hectares (ha) and the percentage they occupied for 
1990–2000, 2000–2010 and 2010–2020 respectively. 
Figure  4A, B and C, 5A, 5B and 5C provide illustra-

tions of the changes that have transpired. Water share 
remained stable for all the stated periods.

A  general observation depicts a  drastic change 
from 1990 to 2000 (Fig. 4A and 5A) as Close and Open 
forests lost while Agriculture and Built-up area made 
gains. 49.69 of LULC changed, while 50.31 remained 
unchanged (Tab. 4D).

The LULC map continuously changed from 2000 
to 2010 (Fig. 4B and 5B) as Close forest and Built-up 
gained, while Agriculture lost. This rapid development 
shows a positive impact towards urbanization and refor-
estation. 45.55 of LULC changed, while 54.23 remained 
unchanged (Tab. 4D).

Unceasingly, the LULC map changed from 2010 to 
2020 (Figures 4C and 5C) as Open forest was cleared 
mostly for Built-up, while Agriculture stagnated. This 
rapid development showed positive impact towards ur-
banization as in the previous decade. 48.67 of LULC 
changed, while 51.33 remained unchanged (Tab. 4D).

Annual Rate of LULC Change

The annual Rate of LULC change for the 1990–2000, 
2000–2010 and 2010–2020 showed varying rates of 
change (Tab.  4E). For Closed forest, there was a  de-
crease in the yearly rate of -2.0% for 1990–2000, an 

A B C

Figure 4. Land use/land cover change maps of the study area
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Figure 5A. Change analysis 1990–2000

Figure 5B. Change analysis 2000–2010
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increase of 3.0% for 2000–2010 and no change for 
2010–2020. In the case of Open forest, there was a de-
crease of 1.1% in 1990–2000, an appreciation of 1.1% 
in 2000–2010 and a  decrease of 2.4% for 2010–2020. 
Agricultural LULC increased by 1.6% in 1990–2000, 
decreased sharply by 4.2% in 2000–2010 and gained 
marginally 0.9% in 2010–2020. Built-up annual rate of 
change remained high throughout the stated periods. 
Water share remain fairly constant.

Validating LULC prediction model and 2040 LULC 
simulated map

To get satisfactory results and to authenticate the LULC 
estimates produced by the CA-Markov model, the com-
puter-generated 2020 LULC extents were compared to 
the actual present 2020 land use areas. Assessment of 
simulated and classified map for the year 2020 is pre-
sented in Table 5A. 

Table 5 specifies that Close forest area and water 
bodies had the best agreement. The computer-gener-
ated 2020 LULC areas expressed in percentages were 
14.94% and 1.93% and the actuals were 14.44% and 
1.82%, respectively, for Close Forest and Water bod-
ies. The simulated LULC map showed an overestimat-
ed share for Open forest at 50.56%, while the Actual 
LULC map showed it to be 38.82%. The simulated 

LULC map showed that Agriculture and Built-up ar-
eas were underestimated at 16.02% and 16.54%, while 
the Actual LULC map put the figures at 20.11% and 
24.80.

Table 5. Comparison of 2020 Actual and Predicted LULC 
Maps

LULC 
Class

2020 Actual  
LULC Map

2020 Predicted  
LULC Map

area (ha) area (%) (ha) area (%)

Close 
forest 41,116.82 14.44 42,547.73 14.94

Open forest 110,549.87 38.82 143,998.81 50.56

Agriculture 57,279.93 20.11 45,620.54 16.02

Built up 70,638.63 24.80 47,103.95 16.54

Water 5,194.99 1.82 5,509.21 1.93

Total 284,780.24 100.00 284,780.24 100.00

Statistical evaluation based on the Kappa coef-
ficient was used to measure the overall agreement of 
matrix, the ratio diagonal values’ summation versus the 
total number of pixel counts within the matrix and the 
non-diagonal elements would be the best approach to 
assess the model accuracy (Arsanjani et al. 2013). 

Figure 5C. Change analysis 2000–2020
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Arsanjani et al. (2013) posits that a  kappa value 
of 0 illustrates the agreement between actual and ref-
erence map (equals chance agreement), the upper and 
lower limit of kappa is +1.00 (it occurs when there is 
total agreement) and -1.00 (it happens when there is 
less chance of agreement). The accuracy assessment 
process achieved by employing VALIDATE module 
in IDRISI Selva environment v. 17 produced K val-
ues (Kstandard = 0.6595; Kno = 0.7313; Klocation = 
0.7241; KlocationStrata = 0.7241) above 0.8, show-
ing satisfactory level of accuracy. These values were 

found to fall within the standard values suggested 
by Monserud & Leamans (1992) that a value of kap-
pa of 75% or greater showed a very good to excellent 
classifier performance, while a  value less than 40% 
is poor. 

Table  6 and Figure  6 show the simulated LULC 
map for 2040. The cumulative forest cover comprising 
both the Close and Open forests had reduced as the area 
are being converted for agricultural use and built-up 
purposes. Agriculture share declines as the area is con-
verted into the construction of houses and social ameni-
ties. Built-up category is the highest gainer and this is 
mostly at the expense of Agriculture and now assumes 
the dominant LU class. Water level remains stable. This 
fast expansion shows the positive impact towards ur-
banization.

LULC Trajectory for 1990–2040 

Figure  7 shows the trajectory of LULC from 
1990–2040 covering 50 years. The diagram describes 
a worrying scenario for the forests. There is forest loss 
(deforestation and degradation) from as high as 66% 
in 1990 to 44% by 2040. Agricultural land will con-
tinue to decline paving way for more houses and so-
cial amenities to be provided. Built-ups’ share would 
continue to be the fastest growing land use class from 
4.8% in 1990 to 35.2% by 2040. The water share will 
remain unchanged throughout the 50 years under con-
sideration.
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Figure 7. LULC Trends covering 1990–2040

Table 6. Quantification of 2040 Predicted LULC  

LULC Class Area (ha) Area (%)
Close Forest 36,588.07 12.85
Open Forest 93,682.74 32.90
Agriculture 49,077.53 17.23
Built Up 100,235.1 35.20
Water 5,196.8 1.82
Total 284,780.24 100.00

Figure 6. Predicted LULC Map for 20 years (2040)
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Discussion

Remote Sensing and GIS in LULC Appraisal 

The optimal utilization of land and its resources re-
quires an in-depth information of the historical, current 
and possible future scenarios. RS and GIS provide the 
tools expedient for monitoring the dynamics of LULC 
ensuing out of both the changing demands of increas-
ing populace and elements of nature acting to influence 
the landscape (Appiah 2017; Joshi 2017). Natural and 
man-made processes continue the transformation of 
Earth’s atmosphere and land (Khairullina et al. 2019; 
Gregory 2019). The appraisal of the spatio-temporal 
patterns of LULC in forests, rural, urban and other 
land use forms are necessary to the understanding of 
the evolution of forest loss, urban systems and other 
critical ecosystem services. Consequently, information 
about LULC extent, change and forecasting are essen-
tial for apprising land cover maps and the management 
of natural resources (Nampak et al. 2018; Cerbaro et 
al. 2020). 

Satellite imagery deliver a proficient means of ob-
taining information (data) on spatial distribution and 
temporal trends of LULC required for quantifying, ap-
praising, forecasting and projecting land changes (Ton-
neau and Maurel 2016; Domeneghetti et al. 2018). Ad-
ditionally, in inaccessible terrain (such as mountainous, 
marshy, glacial and many others), remote sensing tech-
nique is feasibly the only method of procuring relevant 
data at a cost and time effective basis (Stead et al. 2019; 
Hakeem et al. 2018). 

The old classical conservative ground methods of 
LULC are labour intensive, time consuming and are 
mostly done irregularly. The resultant maps from these 
processes rapidly become outmoded with the passage of 
time due the dynamic changes occurring in the world. 
Remote Sensing techniques on the other hand provides 
accurate LULC maps and monitoring changes at rela-
tively less labour intensive, regular intervals of time and 
can be continuously updated (Mani and Varghese 2018; 
Alganci 2019). Despite the spatial and spectral hetero-
geneity challenges of agricultural lands (tree cash crops 
like cocoa, palm, oranges to perennial crops such as 
maize, rice, plantain) in Africa and urban environments, 
remote sensing remains the preferred choice as the suit-
able source of reliable information about the multiple 
facets of LULC (Pandey et al. 2019; Orynbaikyzy et al. 

2019). To monitor and appraise dynamic changes (ex-
tent, patterns and trends) of LULC at local, continental 
and global levels, and for the exploration of the scope 
of future modifications, the geospatial techniques were 
used to produce good results.

LULC trajectory

LULC change detection appraisals have several infer-
ences contingent on the scope and concentration of 
the researcher. However, the popular understanding of 
Change Detection application is its ability to provide 
information on changes in LULC covering extent, loca-
tion and trend, and the spatial distribution of the change 
(Singh 1989; Zhu 2017). 

The LULCC maps for 1990–2000, 2000–2010 
and 2010–2020 gives a  great cause for concern in 
the light of climate change concerns. LULC changes 
of 141,504.72  ha (49.69%), 130,354.25 ha (45.77%), 
138,598.03 ha (48.67%) for the respective epoch years 
had transpired transitioning mostly into other land use 
classes. Deforestation is prevalent outside of the pro-
tected areas, while forest degradation is manifested in 
the protected areas as a  result of logging (mostly ille-
gal), illegal mining popularly called Galamsey and ad-
mitted agricultural activities. Cumulatively, urbaniza-
tion is on the rise as the population continues to rise. 
LULCC in this study is clearly caused by anthropogenic 
forces. These findings concur with the earlier research 
undertaken (Koranteng and Zawila-Niedzwiecki 2015; 
Kleemann et al. 2017; Abass et al. 2019).

Predicting the future land use changes

Forecasting LULC has become critical in land and re-
source management (Trammell et al. 2018; Anand et 
al. 2018). The consolidative and combinative model of 
cellular automata and Markov chain were employed to 
forecast the future LULC pattern of the study area for 
the year 2040. 

The forecast for the period 2040 indicate the human 
built-up class becoming the dominant LU in the study 
area. Mostly, the measurements display a growing trend 
in human-built environment, which is attributed to the 
increasing human population (GSS 2013). The Ashanti 
Region as the centre of the country with its rich natural 
resources and strategic location attracts migrants from 
different communities in Ghana and other nationals 
from West Africa and the continents. 
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Conclusion

This study has demonstrated the significance of LULC 
in mid zone of Ghana in providing appropriate evidence 
in time for decision making concerning the forest loss, 
reduction in cropland and surging built-up areas. The 
techniques for extraction of LULC maps (1990, 2000, 
2010, and 2020), and the model employed to forecast 
the future LULC (2040) through the CA-Markov mod-
elling, have made possible to acquire information from 
examination of LULCs pertaining to the extent and 
type of each LULC, while demonstrating LULC con-
versions in the study area. Largely, the findings of this 
study specify that remote sensing images’ classification 
(Supervised) is a vigorous means of extracting suitable 
LULC maps. The capacity of CA-Markov model in 
forecasting was ascertained to be satisfactory. 

LULC investigation offer vital information for 
comprehensive global, continental, regional, country-
wide and local environment change and sustainable 
development researches. These studies are useful for 
planning and management for decision-makers. In this 
study, a synergy of different satellite images (Landsat 
TM, Landsat ETM+, Disaster Monitoring Constella-
tion-DMC, Alos and SENTINEL) using a long-time-se-
ries of (1990, 2000, 2010 and 2020) remote sensing im-
ages with varying resolution were employed to achieve 
comprehensive information of LULC. The study high-
lighted the forest loss (deforestation and degradation), 
surging built-up areas, reducing agricultural land and 
conversion processes in Ghana’s Ashanti regional capi-
tal (Kumasi) and surrounding districts during the peri-
ods of 1990–2000, 2000–2010 and 2010–2020. The gen-
eral pattern of LULC in the study area included forest 
loss, an expansion of built-up land, as well as a reduc-
tion in cropland. Water bodies remained fairly stable be-
cause the main water bodies (Lake Bosumtwi, Barekese 
Headworks and Owabi Headworks) in the study area are 
important national assets and are duly under protection. 

The transition from forest and agriculture to built-up 
land have been the prevailing LULC patterns over the 
past 30 years. Forest (Close and Open) remains the dom-
inant land-use type in the study area because the area 
hosts the Bobori Forest Reserve and the forests surround-
ing the Barekese and Owabi Headworks are protected ar-
eas. However, forest outside these protected areas have 
been greatly depleted and converted into other uses.

This study found the major developments of histori-
cal LULC transformations in the study area and pro-
jected these into the future for possible LULC transition 
processes. CA-Markov model is a convenient means for 
LULC prediction, the study affirmed. Consequently, the 
CA-Markov model is vital for LULC policy formulation 
and development.
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