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Abstract Coffee agroforestry systems deliver

ecosystem services (ES) critical for rural livelihoods

like food but also disservices that constrain livelihoods

like fostering coffee-pests. Since such ES are tree-

based, maximizing ES and limiting constraints

requires knowledge on optimizing on-farm tree com-

position especially trees adapted to local conditions.

The study was in three sites along a rainfall gradient in

Central Uganda where we: assessed tree diversity in

coffee agroforestry; ranked tree suitability for provid-

ing ES according to farmers’ knowledge; and then

proposed an approach for optimizing on-farm tree

composition for delivery of ES. We collected data on

tree diversity and, farmers’ knowledge of tree species

and the ES they provide. Farmers ranked ES in order

of importance to their livelihoods (‘Needs rank’) and

ranked trees according to suitability for providing ES.

Using Bradley Terry modeling, we grouped trees into

‘ES groups’ according to suitability for providing

different ES and ranked ‘ES groups’ according to tree

diversity (‘Diversity rank’). Tree-suitability for pro-

viding ES and importance of ES to farmers varied with

rainfall regime but tree diversity did not match

farmers’ needs for ES. We propose the FaD–FaN

(matching farm tree diversity to farmers’ needs)

approach for optimizing tree species composition with

respect to tree-suitability for farmers’ priority ES.

Farmers locally prioritize ES needed and identify trees

that best serve such ES. The approach then focuses on

modifying on-farm tree diversity to match/suit
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farmers’ priority ES. The FaD–FaN approach caters

for varying socio-ecological conditions; it’s adapt-

able for other coffee and cocoa-growing areas

worldwide.

Keywords Coffee � Shade trees � Tree

diversification � Farmers’ knowledge � Farmers’

needs � Climate Change

Introduction

Globally, areas suitable for coffee production will

shrink up to 40% if temperatures increase by 2 �C by

2050 and 4 �C by 2100 (IPCC 2014; Adhikari et al.

2015). Coffee production will remain possible in some

areas of East Africa but sustaining or improving upon

current levels of production will require adaptation

(Bunn et al. 2015). A commendable adaptation option

is the promotion of agro-biodiversity and delivery of

ecosystem services (ES) from ecosystem-based adap-

tation practices (Noordwijk et al. 2011). Ecosystem-

based adaptation practices can deliver an optimized set

of ES that can support farmers to adapt to, and mitigate

climate change effects and improve livelihoods: The

most promising ecosystem-based adaptation practice

in coffee production is agroforestry (Vignola et al.

2015). However, not all agroforestry options fit

everywhere (Coe et al. 2014). Moreover, the current

state of knowledge fails to demonstrate how to

optimize delivery of ES through agroforestry (Mbow

et al. 2014a). Optimizing ES delivery is critical for

context-specific agroforestry options including syn-

ergies between climate change mitigation and adap-

tation (Rahn et al. 2014; Vaast et al. 2016). Since

biodiversity underpins ES delivery (Cardinale et al.

2012), targeted changes in tree diversity can influence

ES derived from coffee agroforestry (Cardinale et al.

2011; de Beenhouwer et al. 2013). We hypothesize

that farms should have more tree diversity—hence

more functional stability (Leary and Petchey 2009;

Mori et al. 2013)– targeted to deliver priority ES. This

study proposes an approach for optimizing on-farm

tree composition for ES delivery. The study: assessed

tree diversity in coffee farms; used farmers’ knowl-

edge to evaluate tree suitability for providing ES; and

proposes an approach for optimizing on-farm tree

composition to deliver a locally-adapted set of ES that

meets farmers’ prioritized needs.

Methods

Site description

The study covered the greater Luweero region (Fig. 1)

of Central Uganda (between 31�E–32�E and 0.5 N–

1.3�N) with an area of approximately 9000 km2. The

greater Luweero region receives a bimodal rainfall

with peaks in March to May and October to Novem-

ber. Annual rainfall varies from 700 mm in the North

up to more than 1300 mm in the South (Lwasa et al.

2011; Funk et al. 2012). Consequently, the rainfall

gradient was divided into three zones: a high rainfall

zone ([ 1300 mm), a moderate rainfall zone

(1100–1300 mm) and a low rainfall zone

(\ 1100 mm). Across the rainfall gradient, most of

the Robusta coffee is grown in CAFS. The present

study used this rainfall gradient as a proxy for a

climatic gradient to generate insights into possible

climate change effects on tree suitability for ES.

Data collection

Stratified random sampling was used to select study

farms where rainfall zoning was the stratum and

within each rainfall zone, we randomly chose 100

coffee farming households totaling to 300 households

that we studied in two phases. In phase one, we

randomly selected 150 coffee farming households (50

per rainfall zone) and collected tree diversity data

from their coffee farms through tree-inventories.

During the inventories, we identified tree species by

local names in Luganda (Language in central Uganda)

and corresponding botanical names from tree identi-

fication guides e.g., Katende et al. (1995). For every

tree species encountered, we made a technical sheet

with photos showing its bole, fruits, leaves, branching,

flowers, bark, and local names. In phase two, we

conducted a cross-sectional household survey of 300

coffee farming households (including 150 of phase

one) and assessed farmers’ local knowledge of trees

using ranking interviews. The interview had two

stages. First, we presented farmers with 12 tree-based

ES that they consider key services for their liveli-

hoods: coffee yield increase (some trees associated
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with increased coffee yield); soil moisture preserva-

tion (some trees associated with soil water conserva-

tion); leaf litter provision (some trees drop a lot of

litter); tree leaf decomposition (some tree-leaves

decompose fast); food provision (some trees have

edible parts); provision of quality shade for coffee

(some trees have better shade for coffee); microclimatic

temperature buffering (some trees cool the microcli-

mate more than others); suppression of major coffee

pest—Xylosandrus compactus (some trees are associ-

ated with the pest); weeds suppression (some trees

suppress weed growth); fuel wood provision (some

trees provide better firewood); tree growth rate (some

trees grow faster) and timber provision (some trees

provide better timber). Each farmer ranked these ES

according to importance to his/her livelihood needs.

Second, we presented each farmer with technical sheets

(visual aided tree representations for all tree species) of

the 20 most abundant trees in his/her respective rainfall

zone; and asked him/her to select 10 tree species that he/

she knew best. Each farmer ranked his/her selected 10

trees in order of suitability for providing each of the 12

ES. The ranking was visually aided by technical sheets

(as a representation of tree species) that farmers

arranged from most to the least suitable tree for

providing an ES: ranking one ES at a time until farmers

completed ranking trees for all the 12 ES (Elliott 2009).

Data analysis

Tree species richness and abundance among rainfall

zones

To determine tree species richness among rainfall

zones, we analyzed tree inventory data using Estimate

S software version 9 (Colwell 2013). We present the

four (Chao 1, Chao 2, Jack 1 and Jack 2) most precise,

accurate, robust and unbiased species richness esti-

mators (Walther and Moore 2005; Chiarucci 2012). To

compare species richness among rainfall zones, we

used species accumulation curves scaled by individ-

uals (Chazdon et al. 1998; Gotelli and Colwell 2001)

Fig. 1 Map of study area showing the Luweero region and the different rainfall (precipitation) zones of the study area
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and extrapolated with 95% confidence boundaries

(Shen et al. 2003) until the most species-rich sample

reached an asymptote (Colwell et al. 2012). Species

richness is significantly different between zones if

respective confidence boundaries at asymptote do not

inter-cross each other. To determine species similarity

among rainfall zones, we used Bray–Curtis (BC)

abundance-based similarity index (Bray and Curtis

1957). BC index value ranges from zero (perfectly

similar) to one (perfectly dissimilar). We used rank

abundance curves to determine the most abundant set

(20 species) of trees in each rainfall zone that

represented over 90% of tree diversity.

Farmers’ local knowledge of coffee-shade trees

We analyzed farmers’ ranking of (i) ES and (ii) trees

for providing ES at plot level; using Bradley and Terry

(BT) model (Bradley and Terry 1952) in ‘BradleyTer-

ry2’ package of R (Turner and Firth 2012; R Core

Team 2015). The model based on how various farmers

ranked trees for ES provision to generate a score upon

which it ranks the trees. The scores are, however, not

absolute and are only meaningful relative to one

another and can take on any value from negative to

positive infinity but the magnitude between score is

absolute and does not change. To simplify compar-

isons, we shifted/transformed results to get the lowest

score to zero so as to yield positive scores only. The

difference between scores of individual trees determi-

nes the probability of ranking one tree above another

in the final output. BradleyTerry model also produces

a confidence interval for each score that reflects the

ranking frequency of that tree. Larger confidence

intervals show trees selected rarely for ranking and

ranked less concordantly. The model output is a graph

showing the final rank order of tree species and

associated confidence interval based on model-gener-

ated scores. The rank order shows farmers’ ranking of

how suitably trees deliver ES at the plot level, i.e.,

from the most to the least suitable tree for a particular

ES. To allow flexibility and avoid recommending only

one tree per ES; we applied a set of rules to determine

the best (top) performing group of trees for each ES:

i. The top group should have at least four tree

species.

ii. If the lower boundary of the confidence

interval of current ranked item is lower than

the score of the next ranked item, then those

items belong to the same group. If the lower

boundary of the confidence interval of the

current ranked item is higher than the score of

the next ranked item then such items belong to

different groups.

iii. If the tree right next to the topmost group is a

lone group member (occurs alone in its group),

it is adjoined to the topmost group. The most

suitable (top) groups of trees for various ES

are herein referred to as the ES groups of trees.

Relating diversity rank to ‘Needs rank’ of ecosystem

service groups

‘Diversity rank’ here means the ordering of ecosys-

tem-service groups of trees from one with highest tree

diversity to one with lowest tree diversity. To order ES

groups according to diversity, we used a Rényi

diversity profile (Rényi 1961; Tóthmérész 1995; Lövei

et al. 2013). Renyi diversity profile values were

calculated in R statistical software (R Core Team

2015) with package Biodiversity R (Kindt et al. 2015).

If the profile of group A is above the profile of group B

at all Renyi values, then group A is more diverse than

group B. If the profile of group A inter-crosses that of

group B, the two groups cannot be ordered (Kindt et al.

2006). In this case, we revert to the less strict approach

of a single diversity index, Shannon diversity index, to

derive the ‘Diversity rank’. We derived Shannon

diversity index from, and when the Renyi value

approaches one (Kindt et al. 2006). The ‘Needs rank’

means the ordering of ES groups from most to least

important as ranked by farmers and analyzed using BT

model. We examined the correlation between ‘Diver-

sity rank’ and ‘‘Needs rank’’ using Spearman’s rank

correlation test (Höft et al. 1999).

Results

Tree species composition and diversity

The study recorded 1604 trees in low rainfall zone,

2196 trees from moderate rainfall zone and 2009 trees

in high rainfall zone. Tree-species richness ranged

from 29 species ha-1 in low rainfall zone to 39 species

ha-1 in high rainfall zone (Table 1). The low rainfall
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zone had the lowest number of tree species, genera and

families while high rainfall zone had the highest

number of tree species, genera and families (Table 1).

Species richness varied among rainfall zones in a

pattern similar to that of taxonomic groups (Fig. 2).

There was low species similarity among rainfall zones

but low and high rainfall zones showed higher

similarity (BC = 0.670) than between moderate and

low ones (BC = 0.685) and between high and mod-

erate rainfall zones (BC = 0.812). In each rainfall

zone, about the top 20 tree species constituted about

90% of total tree abundance (Fig. 3).Consequently,

only the most abundant 20 species were used in the

ranking exercise for each rainfall zone.

Farmers’ local knowledge of trees and ecosystem

services

Farmers ranked 12 ES according to their farm and

livelihood needs in each rainfall zone (Fig. 4). Gen-

erally, the importance of tree-ecosystem services to

farmers differed among rainfall zones. For instance,

the importance of shade quality and leaf litter provi-

sion increase but the need to suppress black coffee

twig borer reduces from high to low rainfall zones.

However, some ES were equally important in all

rainfall zones. For example, farmers ranked soil

moisture preservation and yield increase in the top

three ES in all rainfall zones. For every ES considered,

we determined a group of trees that farmers think that

are the best at providing that service (Table 2). For

example, Fig. 5 shows the ranking of trees suitable for

Table 1 Species richness for the three rainfall zones of Central Uganda, based on four non-parametric species richness estimators

and their standard errors in parentheses

Rainfall zone Trees Genera Families Species ha-1 Chao 1 Chao 2 Jack 1 Jack 2

High 2009 42 28 39 46.51 (2.13) 49.92 (4.76) 51.98 (3.18) 54.17 (6.64)

Moderate 2196 35 24 35 42 (0.12) 42 (0.08) 42.98 (0.98) 39.21 (0.00)

Low 1604 37 20 29 36.11 (1.5) 36.93 (2.22) 38.74 (1.98) 39.06 (4.17)
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shade quality for coffee and the most suitable tree

species (top group) are marked with a rectangle.

According to farmers’ knowledge, this top group

forms the ES group of tree species for shade quality in

high rainfall zone. Trees were also not limited to

serving one ES. According to farmers, the most

multipurpose trees were: Albizia coriaria Oliv,

Fabaceae family, suitable for 9 out of 12 ES in all

rainfall zones and Ficus natalensis Hochstetter,

Moraceae family, suitable for 8 out of 12 ES in all

rainfall zones. The least multipurpose trees were

Annona muricata, Annonaceae family, and Grevillea

robusta, Proteaceae family, as they each served only

one ES in one rainfall zone but ranked highly for the

respective ES they served.

Relating on-farm tree diversity to farmers need

for ecosystem services

This study determined farmers’ ranking of ES (Needs

rank) from most to least important for their livelihoods

(Fig. 4) across rainfall zones. The study also used tree
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diversity (Diversity rank) to order ES groups from

most to least diverse in each rainfall zone (Fig. 6;

Table 3). We found that ‘Diversity rank’ was not

significantly correlated with ‘Needs rank’ in any

rainfall zones (Fig. 7): on-farm tree diversity of ES

groups did not match farmers need for such ES.

Discussion

Tree species composition and diversity

Most tree-diversity studies in agroforestry consider

intensification gradients especially with increasing

distance from natural forests but this study considered

agroforests far from natural forests (no nearby forest)

but along a rainfall gradient (Méndez et al. 2007;

Valencia et al. 2014; Häger et al. 2015). We found

relatively few species, genera, and families per unit

area. This is due to the fact that, without a nearby

natural forest, farmers entirely rely on and overexploit

agroforests and yet re-plant little beyond harnessing

natural regeneration (Häger et al. 2015). Low species

richness means low functional redundancy implying

that minimal losses in species richness will adversely

affect ecosystem functioning (Barnes et al. 2014).

Along the rainfall gradient, we found higher species

richness in high rainfall zone than in low rainfall zone

and species similarity was low among rainfall zones.

This is because different rainfall zones support natural

regeneration differently which emphasizes the need

for deliberate enrichment planting to boost species re-

stocking especially in low rainfall zone where natural

regeneration of some trees prioritized by farmers may

not be as quick as farmers would like it to be (Busby

et al. 2010). Increasing species richness will increase

ecosystem functioning, functional redundancy, and

stability of ES delivery (Gamfeldt et al. 2013; de

Beenhouwer et al. 2013; Barnes et al. 2014; Caudill

et al. 2014). However, we want to emphasize that

increases in tree diversity may not necessarily increase

ecosystem functioning unless these increases target

tree species suitable for prioritized ES (Radchuk et al.

2015).

Farmers’ local knowledge of trees

and the ecosystem services they deliver

Generally ecological conditions, like rainfall, influ-

ence tree distribution in coffee agroforestry (Bisseleua

et al. 2013). Our findings emphasize this consensus

and further demonstrate that relative suitability of

trees to deliver ES changes among rainfall zones. For

example, diversity data showed that Ficus mucuso

Fig. 5 Ranking of

agroforestry tree species for

the provision of quality

shade for coffee in the high

rainfall zone. (The

rectangular marking

highlights the most

suitable trees for shading

coffee in the high rainfall

zone, i.e., ecosystem service

group of trees)
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grows in all rainfall zones but only farmers of low

rainfall zone ranked it highly among trees suitable for

shade quality. Its shade quality is due to its large

canopy, but in non-limiting water conditions of high

rainfall zone, farmers prefer other tree species such as

Albizia chinensis that provides better quality shade to

coffee even though it needs more water. Furthermore,

relative importance of ES changes with rainfall zones.

Relative importance of shade and leaf litter increased

from high to low rainfall zone. This is because the low

rainfall zone is hotter and coffee needs higher shade

level than coffee in high rainfall zone (DaMatta et al.

2007). Farmers also value trees with a lot of leaf litter;

an attribute of trees key in nutrient recycling (Dhanya

et al. 2013). Therefore, each ecological zone is unique

and needs its own tree composition to deliver farmers’

prioritized ES.

Past research efforts looked at the provision of ES

without jeopardizing yield (de Beenhouwer et al.

2013; Lescourret et al. 2015). This study however
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considered yield increase as one of the many ES rather

than one to trade-off with other ES. Farmers’ knowl-

edge showed that specific trees suited better than

others certain ES. Therefore, we grouped trees

according to how well they serve particular ES. Our

groupings are consistent with results from previous

related studies. For example, our results agree with

those of Omeli (2011) showing that leaves from Ficus

natalensis, Carica papaya and Albizia coriaria

decompose quickly and hence such trees are therefore

good for nutrient recycling. Our results also agree with

Jagoret et al. (2014) identifying Milicia excelsa, A.

coriaria and Markhamia lutea as good timber trees,

and those of Kalanzi and Nansereko (2014) showing

that M. excelsa and Ficus mucuso improve soil

fertility.

Relating on-farm diversity to farmers’ need

of ecosystem services

Recognition of farmers’ needs and priorities in

conservation is gaining adhesion (Harvey et al.

2008; Garcia et al. 2010). We advance the consensus

by testing for correlation between farmers’ needs

(Needs rank) and their on-farm tree diversity (Diver-

sity rank). Farmers’ needs did not correlate with on-

farm tree diversity (Fig. 7). Although tree-utility

influences tree planting (Valencia et al. 2014; Häger

et al. 2015), farmers did not necessarily maintain

higher diversity in ES groups of higher priority to

them. For example, soil moisture preservation ranked

highly among farmers’ priority ES but the on-farm

diversity of the ES group for ‘soil moisture preserva-

tion’ was low. According to the insurance hypothesis

(Leary and Petchey 2009; Mori et al. 2013), ES groups

with lower tree diversity are less ecologically

stable and render farmers less resilient to challenges

like climate change (Tscharntke et al. 2011). There-

fore, we emphasize that farmers should base tree

diversification on tree-suitability for ES (Fig. 8), par-

ticularly for adapting to climate change (Minang et al.

2014).

‘FaD–FaN’ approach: matching farm tree diversity

to farmers’ needs

Analysis of previous agroforestry research revealed

some research questions that remain unanswered

(Mbow et al. 2014b) such as: which tree species suite

which site conditions? How can we optimize ES

delivery through agroforestry systems? We propose

that desired ES can be delivered through optimizing on

Table 3 Shannon diversity index (H), diversity rank and needs rank of studied ecosystem services in three rainfall zones of Central

Uganda

Ecosystem services High rainfall zone Moderate rainfall zone Low rainfall zone

H Diversity

ranka
Needs

rankb
H Diversity

ranka
Needs

rankb
H Diversity

ranka
Needs

rankb

Litter 0.32 11 11 1.88 1 8 1.28 7 7

Soil moisture 0.83 10 2 1.05 8 1 1.31 6 2

Food 1.06 9 4 1.41 3 5 1.41 4 5

Timber 1.39 8 10 1.30 6 11 1.16 8 11

Weed Control 1.42 7 9 1.41 4 7 1.47 3 8

Temperature 1.47 6 6 1.31 5 6 1.35 5 4

Yield 1.50 5 1 0.88 10 3 1.47 2 1

Shade quality 1.50 4 5 1.29 7 4 1.14 9 3

Leaf

decomposition

1.68 3 3 1.04 9 2 2.01 1 6

Growth rate 1.74 2 8 0.77 11 9 1.08 10 9

Firewood 1.83 1 7 1.49 2 10 0.80 11 10

aRank of ecosystem service groups of trees according to their tree diversity
bRank of ecosystem services in order of importance to farmers livelihoods
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farm tree-composition with respect to the suitability of

various trees to deliver ES in different environments.

This can be achieved through a step-wise approach we

refer to as FaD–FaN—farm tree diversity to farmers’

needs at the plot level. The premise of FaD–FaN is that

we assessed on-farm tree diversity on one side and

farmer’s needs (ES) on the other side. Then we

examined whether a particular farmer has the trees that

are suitable for providing his/her prioritized ES. If not,

then the farmer is advised to adjust his on-farm tree

composition to add/increase on trees species suit-

able for his/her prioritized ES.

In our study, on-farm tree diversity did not match

farmers’ need of ES farmers and we recommend

increasing on-farm tree Diversity (FaD) to match

Farmer’s Needs (FaN). The diversity increase could

be either species richness or abundance or both.

However, the trees to add must be chosen for

suitability to provide prioritized ES that has fewer

trees on the farm. The FaD–FaN approach, therefore,

supports integrating farmers’ needs and priorities in

agroforestry designs thereby answering numerous

calls for such integration (Harvey et al. 2008; Garcia

et al. 2010; Schroth and McNeely 2011; Rey Benayas

and Bullock 2012). FaD–FaN approach is also a

practical instrument for participatory engagement of

farmers and scientists to design conservation and

agroforestry programs (Lescourret et al. 2015). The

implementation of the approach may be aided by a

decision support tool (van der Wolf et al. 2016).

Conclusions and recommendations

In the present study, changes in rainfall zones

influenced tree diversity, the relative importance of

ES and relative tree-suitability for ES delivery indi-

cating that local context underpins appropriate agro-

forestry designs. Therefore, the FaD–FaN approach

advocates for determining tree diversity, the relative

importance of ES and relative tree-suitability for ES

delivery in each rainfall zone separately. In farms

where tree diversity does not match farmers’

Fig. 7 Correlations

between ‘Diversity rank’

and ‘Needs rank’ for the

three rainfall zones and the

ideal situation showing

Spearman’s rho and p value

for each. Asterisk indicate

correlation is not significant,

Diversity rank rank of

ecosystem service groups of

trees according to their tree

diversity,Needs rank rank of

ecosystem services in order

of importance to farmers’

livelihoods, ecosystem

service group of trees is

constituted of trees

suitable for providing that

ecosystem service

cFig. 8 A conceptual framework of the ‘FaD–FaN’ (matching

farm diversity to farmers’ needs) approach for optimizing

coffee-agroforestry tree composition for ecosystem service

delivery
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prioritized needs, we propose deliberate increases in

on-farm tree diversity targeted to boost prioritized ES

of currently low tree diversity—cold spot approach

(Melián et al. 2015). It is also critical to scale out the

development of ‘ES groups’ of trees to other land-

scapes and socio-economic conditions. These ES

groups of trees will underpin tree selection basing on

tree suitability for ES.

In this study, farmers’ needs for ES did not match

with their on-farm tree diversity; there is need to

promote a tree management approach that supports

tree diversification with respect to tree suitability for

ES—the FaD–FaN approach. To simplify the task of

implementing the FaD–FaN approach especially for

multiple ES, van der Wolf et al. (2016) presented a

decision support tool. Farmers select ES that they need

and the tool outputs a set composed of the best-suited

tree species at the plot level. Farmers can now

optimize their on-farm tree composition for ES

delivery in coffee agroforestry. By adopting the

FaD–FaN in coffee growing regions beyond the study

area, agroforestry will be a step closer to delivering on

the promise of improving agricultural livelihoods.
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Häger A, Fernández Otárola M, Stuhlmacher MF et al (2015)

Effects of management and landscape composition on the

diversity and structure of tree species assemblages in cof-

fee agroforests. Agric Ecosyst Environ 199:43–51. https://

doi.org/10.1016/j.agee.2014.08.022

Harvey CA, Komar O, Chazdon R et al (2008) Integrating

agricultural landscapes with biodiversity conservation in

the Mesoamerican hotspot. Conserv Biol 22:8–15. https://

doi.org/10.1111/j.1523-1739.2007.00863.x
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Tóthmérész B (1995) Comparison of different methods for

diversity order. J Veg Sci 6:283–290. https://doi.org/10.

2307/3236223

Tscharntke T, Clough Y, Bhagwat SA et al (2011) Multifunc-

tional shade-tree management in tropical agroforestry

landscapes—a review. J Appl Ecol 48:619–629. https://

doi.org/10.1111/j.1365-2664.2010.01939.x

Turner HL, Firth D (2012) Bradley–Terry models in R: the

BradleyTerry2 package. J Stat Softw 48:1–21

Vaast P, Harmand J-M, Rapidel B et al (2016) Coffee and cocoa

production in Agroforestry—a climate-smart agriculture

model. In: Torquebiau E (ed) Climate change and agri-

culture worldwide. Springer, Netherlands, pp 209–224

Valencia V, Garcı́a-Barrios L, West P et al (2014) The role of

coffee agroforestry in the conservation of tree diversity and

community composition of native forests in a biosphere

reserve. Agric Ecosyst Environ 189:154–163. https://doi.

org/10.1016/j.agee.2014.03.024

van der Wolf J, Jassogne L, Gram G, Vaast P (2016) Turning

local knowledge on agroforestry into an online decision-

support tool for tree selection in smallholders’ farms. Exp

Agric. https://doi.org/10.1017/S001447971600017X (In
press)

Van Noordwijk M, Hoang M, Neufeldt H et al (eds) (2011) How

trees and people can co-adapt to climate change: reducing

vulnerability through multifunctional agroforestry land-

scapes. World Agroforestry Centre (ICRAF), Nairobi

Vignola R, Harvey CA, Bautista-Solis P et al (2015) Ecosystem-

based adaptation for smallholder farmers: definitions,

opportunities, and constraints. Agric Ecosyst Environ

211:126–132. https://doi.org/10.1016/j.agee.2015.05.013

Walther BA, Moore JL (2005) The concept of bias, precision

and accuracy, and their use in testing the performance of

species richness estimators, with a literature review of

estimators. Ecography (Cop) 28:815–829

770 Agroforest Syst (2019) 93:755–770

123

https://doi.org/10.2307/3236223
https://doi.org/10.2307/3236223
https://doi.org/10.1111/j.1365-2664.2010.01939.x
https://doi.org/10.1111/j.1365-2664.2010.01939.x
https://doi.org/10.1016/j.agee.2014.03.024
https://doi.org/10.1016/j.agee.2014.03.024
https://doi.org/10.1017/S001447971600017X
https://doi.org/10.1016/j.agee.2015.05.013

	Integrating local knowledge with tree diversity analyses to optimize on-farm tree species composition for ecosystem service delivery in coffee agroforestry systems of Uganda
	Abstract
	Introduction
	Methods
	Site description
	Data collection

	Data analysis
	Tree species richness and abundance among rainfall zones
	Farmers’ local knowledge of coffee-shade trees
	Relating diversity rank to ‘Needs rank’ of ecosystem service groups


	Results
	Tree species composition and diversity
	Farmers’ local knowledge of trees and ecosystem services
	Relating on-farm tree diversity to farmers need for ecosystem services

	Discussion
	Tree species composition and diversity
	Farmers’ local knowledge of trees and the ecosystem services they deliver
	Relating on-farm diversity to farmers’ need of ecosystem services
	‘FaD--FaN’ approach: matching farm tree diversity to farmers’ needs

	Conclusions and recommendations
	Acknowledgements
	References




