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Abstract 

Background  Tropical forests are critical for the global carbon budget, yet they have been threatened by deforesta-
tion and forest degradation by fire, selective logging, and fragmentation. Existing uncertainties on land cover classifi-
cation and in biomass estimates hinder accurate attribution of carbon emissions to specific forest classes. In this study, 
we used textural metrics derived from PlanetScope images to implement a probabilistic classification framework to 
identify intact, logged and burned forests in three Amazonian sites. We also estimated biomass for these forest classes 
using airborne lidar and compared biomass uncertainties using the lidar-derived estimates only to biomass uncertain-
ties considering the forest degradation classification as well.

Results  Our classification approach reached overall accuracy of 0.86, with accuracy at individual sites varying from 
0.69 to 0.93. Logged forests showed variable biomass changes, while burned forests showed an average carbon loss 
of 35%. We found that including uncertainty in forest degradation classification significantly increased uncertainty 
and decreased estimates of mean carbon density in two of the three test sites.

Conclusions  Our findings indicate that the attribution of biomass changes to forest degradation classes needs to 
account for the uncertainty in forest degradation classification. By combining very high-resolution images with lidar 
data, we could attribute carbon stock changes to specific pathways of forest degradation. This approach also allows 
quantifying uncertainties of carbon emissions associated with forest degradation through logging and fire. Both the 
attribution and uncertainty quantification provide critical information for national greenhouse gas inventories.

Keywords  Forest degradation, Selective logging, Forest fire, Very high-resolution imagery, Probabilistic classification, 
Airborne lidar, Biomass, Amazon

Background
Tropical forests account for more than half of terrestrial 
aboveground biomass carbon stocks, and host 60–70% 
of terrestrial species, despite covering only 7–10% of 
the land [1–3]. Deforestation, selective logging, fires, 
and fragmentation have greatly altered forests in recent 
decades across the tropics [4–6]. Second growth and 
degraded forests cover more area today than intact for-
ests, although the full extent of tropical forest degrada-
tion is highly uncertain [7–11]. Likewise, carbon losses 
attributed to degradation may be similar to or exceed 
deforestation-related losses [12–20]. The uncertainty for 
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this carbon source is partly due to the aforementioned 
uncertainty in degradation area but is also due to the 
variability in carbon stocks in degraded forests at differ-
ent spatial and temporal scales [14, 21–27]. The conse-
quences of forest degradation for potential future losses 
and gains (through regeneration) for carbon budgets, 
forest structure and biodiversity remain largely unknown 
[28–31].

Since the late 1990s, researchers have used moderate 
resolution remote sensing for detection of logging and 
fire effects on forests in Amazonia [10, 32–35]. Linear 
spectral mixture modelling using passive optical data has 
been the main tool for this approach [10, 36–38]. Man-
ual auditing has been required in regional applications 
[8, 39, 40]. More recent studies employ a combination 
of spectral and textural information with machine learn-
ing [41, 42]. The addition of temporal filtering to spectral 
data permits detection of understory forest fires at varied 
resolutions when adequate temporal information is avail-
able [43]. Recent work identifying forest degradation in 
the Amazon using Landsat time series is promising [7, 
44] but does not separate the main degradation drivers 
(e.g., logging vs. fire) or estimate the effects of degrada-
tion on biomass. Textural analysis of very high resolution 
(VHR) images has been applied to local studies of log-
ging and forest structural characteristics, although the 
cost of acquiring and processing data over large areas 
has remained a challenge [45–47]. The advent of high 
frequency and more accessible VHR images such as the 
PlanetScope archive, along with increased processing 
capabilities, has opened new possibilities for detailed for-
est degradation detection and monitoring (e.g., [48]).

Deforestation and forest degradation in the Brazilian 
Amazon are both substantial sources of carbon to the 
atmosphere [30, 49, 50]. Biomass stocks have been quan-
tified through remote sensing data calibrated with field 
inventory data [51–54] although at a fine spatial scale, 
changes in forest condition are highly uncertain. Uncer-
tainty arises from the inconsistency of land cover maps 
and the variability in land change area estimates, which 
can have dramatic effects on the outputs of models that 
rely on such information [55]. Biomass estimates from 
current and near-future space missions (e.g., NASA 
GEDI and ESA BIOMASS) will greatly reduce uncertain-
ties at the 1 km2 resolution [56–58] but these missions 
will only provide a view of forest biomass over a relatively 
brief period [3 to 5 years]. While GEDI presents a spec-
tacular advance in our knowledge of biomass and other 
aspects of forest structure, it is a sampling mission that 
will inevitably leave spatial gaps. Airborne lidar has pro-
vided high spatial resolution and accurate aboveground 
biomass information [26, 59] for intact and degraded for-
est but its coverage is sparse.

Effective management of carbon dynamics related 
to forest land use change requires accurate attribu-
tion of carbon sources and sinks. As noted above, for-
est degradation is an important and poorly quantified 
carbon source while recovery after degradation is an 
overlooked potential carbon sink. The promotion of for-
est carbon sinks is a potentially cost-effective approach 
for mitigating climate change within an overall strat-
egy of forest carbon management and conservation [61, 
62]. Ultimately, improving the ability to accurately depict 
biomass changes associated with degradation requires 
knowledge of where and when forests were degraded, the 
biomass of degraded versus intact forests, and the quan-
tification of estimated uncertainties.

Classification of tropical forest degradation and asso-
ciated biomass estimation remain a significant challenge 
because existing uncertainties in this type of classification 
and in biomass estimation hinder accurate attribution of 
carbon emissions to specific forest classes. In this study, 
we classify intact and degraded forests and combine deg-
radation probability estimates with biomass estimates. 
We use textural features from commercial very high-res-
olution optical data to develop a probabilistic classifica-
tion of intact, logged, and burned forests at selected sites 
in the Brazilian Amazon. We combine our forest classi-
fication with aboveground biomass distributions derived 
from airborne lidar data using a Monte Carlo simulation 
and compare biomass uncertainties from lidar data only 
to uncertainties estimated when both the uncertainty 
of forest degradation classification and biomass uncer-
tainty are considered. We address the following research 
questions:

a.	 What is the accuracy of a forest degradation classifi-
cation using a machine learning approach?

b.	 What is the impact of forest degradation on biomass 
estimates?

c.	 How does the uncertainty of forest degradation clas-
sification affect biomass estimates and uncertainty in 
degraded forests?

Methods
To address research question (a), we implemented a gra-
dient boosted classification modelling framework with 
forest degradation history from Landsat time-series as 
reference data and textural metrics derived from Plan-
etScope images as predictors (Fig. 1, box 1). To address 
research question (b), we estimated biomass distributions 
of intact, logged and burned forests from airborne lidar 
data (Fig. 1, box 2). To address question (c), we compared 
biomass estimates from a Monte Carlo simulation that 
accounted for biomass uncertainty from lidar data to a 
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simulation that also accounted for forest degradation 
classification uncertainty from the model referenced in 
(a) (Fig. 1, box 3).

Study sites
We conducted our study at three sites in the Brazilian 
Amazon that covered portions of the Feliz Natal Munici-
pality and Xingu Indigenous Territory in the Brazilian 
state of Mato Grosso, and Saracá-Taquera National For-
est, in the Brazilian state of Pará (Fig. 2). The Feliz Natal 
site comprises a mixture of land covers, whereas Xingu 

and Saracá sites were included as mixtures of intact for-
est with logging and fires only, respectively.

Feliz Natal (Fig. 2, site 1) is located in the Brazilian Arc 
of Deforestation, a government-defined region that con-
centrates 70% of deforestation within 100 municipali-
ties (~ 1 million km2). Feliz Natal has a diversity of land 
uses including pastures and mechanized agriculture that 
have replaced part of the original forest cover. Most of 
the remaining forests in this region have been logged and 
a substantial portion of the forests have burned at least 
once [26].

Fig. 1  Diagram of the steps of our study including (1) probabilistic classification of Planet VHR images, (2) biomass estimation from airborne lidar, 
and (3) Monte Carlos simulations to estimate landscape level above ground biomass and uncertainties related to both biomass estimation and 
forest degradation classification
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The Xingu site (Fig. 2, site 2) lies about 80 km south-
east from the Feliz Natal site, but it is located within the 
Xingu Indigenous Territory. Indigenous lands are well-
known barriers for deforestation and other anthropo-
genic pressures in the Amazon [63, 64], however large 
fires occurred in 2016 and 2017 in the Xingu area [65]. 
The climate of Feliz Natal and Xingu region is typical of 
south-eastern Amazonia, with mean annual precipitation 
of about 1900 mm, an extended 5-month dry season and 
mean annual temperature of 25 °C [66].

The Saracá-Taquera National Forest (Fig.  2, site 3) 
holds a federal logging concession administered by 
the Brazilian Forest Service. Along with a long his-
tory of bauxite mining in this National Forest, specific 
areas were assigned for sustainable forest management. 
Selective logging at this site was conducted between 
2015 and 2020 using reduced-impact logging tech-
niques [67] to comply with federal regulations. The cli-
mate at this site is tropical humid, with mean annual 

precipitation of 2000  mm, and dry season extending 
from July to October [68].

Classification of forest degradation
Reference data for forest degradation classification
Our forest degradation reference dataset was built 
from visual interpretation of Landsat TM, ETM + and 
OLI time-series, from 1984 to 2020. At least one cloud-
free image per year was available for each site. For each 
image of the time-series, we computed the Normalized 
Burn Ratio (NBR), a spectral index that has been widely 
used to detect forest disturbances [69, 70]. We then 
manually delineated fire and selective logging polygons 
and recorded the year of the degradation event. We 
masked out water and wetlands based on Gumbricht, 
Roman-Cuesta [71], and deforestation using the Brazil-
ian PRODES classification [72].

Fig. 2  Location of the study sites in the Amazon (A). The insets (B) show forest degradation from logging and fire on PlanetScope false color 
composites (near-infrared, red, green) for the three sites



Page 5 of 14Rangel Pinagé et al. Carbon Balance and Management            (2023) 18:2 	

PlanetScope images
We selected one multispectral PlanetScope image with 
four spectral bands (blue, green, red, and near infra-
red) [73] for each site. For each image we calculated the 
Enhanced Vegetation Index (EVI, [74]), to highlight both 
recent degradation and subsequent regeneration. Image 
dates were selected based on the disturbance occurrence 
on each site and proportion of cloud cover (Table 1).

The GLCM approach and generation of predictors
We used the Gray-Level Co-Occurrence Matrix (GLCM) 
textural technique [75] to calculate metrics used to clas-
sify degraded forests in our test sites. Texture in images 
quantifies pixel grey level differences, size of area where 
change occurs (neighbourhood, defined by a window 
size), and directionality [76]. GLCM tabulates how often 
different combinations of pixel grey levels occur in each 
image and then derives statistics from this tabulation. 
The eight GLCM metrics used in this study can be cate-
gorized into three groups: (1) descriptive statistics, which 
include mean, variance, and correlation; (2) contrast, 
which includes contrast, homogeneity, and dissimilarity; 
(3) and orderliness or regularity, which includes angular 
second moment and entropy. Description of the GLCM 
metrics and practical guidelines for choosing GLCM 
metrics for classifying remote sensing images can be 
found in Hall-Beyer [77] and Hall-Beyer [76].

We generated the GLCM metrics for the Planet-derived 
EVI using the glcm package [78] in R [79]. After empiri-
cal tests, we selected the following parameters for the 
glcm function: window size of 45 pixels (140.625 m); and 
shift as the average across all directions (i.e., no effects of 
directionality in the observed phenomena). We trimmed 
the outermost window along the edge of each image to 
avoid artifacts where there was insufficient information 
for GLCM to compute accurate textural values.

Although the textural feature window size of about 
141  m captures considerable heterogeneity associated 
with degraded forest patches, we explored aggregating 
windows to a coarser spatial resolution for more accu-
rate classification [80]. We tested different aggregation 
resolutions (140.625 m, 281.25 m, 562.5 m, and 1125 m; 

corresponding to 45, 90, 180 and 360 PlanetScope pix-
els, respectively), and based on model performance, we 
selected the 562.5  m resolution. The following resam-
pling statistics were used to aggregate the GLCM metrics 
from the native resolution (3.125 m) to 562.5 m grid cells: 
average, standard deviation, skewness, root mean square, 
minimum, first quartile, median, third quartile and maxi-
mum. In total, 72 raster layers (9 resampling statistics for 
each of the 8 GLCM metrics) were used as explanatory 
variables for the classification model.

Probabilistic classification model
Rather than selecting a single hard classification for each 
grid cell of our image, we quantified the probability that 
grid cells would fall into each of three classes: intact, 
logged, and burned (Fig.  1, box  1). Gradient boosted 
trees were used to classify grid-level degradation because 
of their strong predictive performance and flexibility in 
accommodating typical features of data such as nonlin-
earities and interactions [81]. Our multinomial classifica-
tion tree model was fitted using the stochastic gradient 
boosting algorithm implemented in the xgboost R pack-
age [82]. The multi:softprob objective function was uti-
lized to output a grid-level prediction containing an 
estimated probability of belonging to each degradation 
class.

Because degradation classes were unbalanced, a class-
weighted loss function was utilized during model train-
ing. We specified a weight variable such that the sum 
of individual observation weights within each class was 
equal across the three degradation classes. Individual 
observation weights were subsequently multiplied by 
the grid cell associated purity (i.e., the percentage of 
the grid cell that is occupied by the dominant class) to 
down-weight error contributions from less homogene-
ous reference data. The full dataset was partitioned into 
training (50%) and test (50%) sets using stratified random 
sampling to balance class distributions within each split. 
The stratification variable consisted of binned purity val-
ues, in increments of 0.2, within each disturbance class. 
GLCM features were centered and scaled within each site 

Table 1  Overview of PlanetScope and lidar data for each site

Site PlanetScope data Airborne lidar data

Image date Area (ha) Year(s) of acquisition Area of intact 
forests (ha)

Area of logged 
forests (ha)

Area of 
burned 
forests (ha)

Feliz Natal 17-Jun-2018 235,872 2017–2018 717 1574 1751

Xingu 18-Oct-2017 191,823 2017 740 0 554

Saracá 19-Sep-2020 45,756 2013–2015 855 2082 0

Total 473,451 2312 3656 2305
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to put each feature on a common scale after combining 
data for the three sites.

Several techniques were utilized to avoid overfitting 
during training and optimize the model’s bias-variance 
trade-off. First, we randomly selected (without replace-
ment) 80% of the training data and 70% of the GLCM 
features to be utilized within each boosting round. This 
stochasticity decorrelates the decision trees and increases 
the predictive performance of the ensemble. Second, we 
used early stopping to halt training once the multiclass 
error rate for the validation set failed to decrease after 
five boosting iterations, thus rapidly detecting the inflec-
tion point of the learning curve. Finally, we set the learn-
ing rate to 0.2.

We determined optimal ranges for each hyperparam-
eter through an iterative grid search. Terminal nodes 
were allowed to have a minimum of five observations, the 
maximum tree depth within a boosting round was equal 
to four, and a reduction of 0.2 in the multiclass error rate 
was required to further partition a leaf node. To assess 
model performance while accounting for uncertainty in 
both partition variability and algorithm stochasticity, we 
fitted classification models to 100 randomly generated 
partitions of the data.

Several studies showed that the degradation signal 
fades from optical images within 3–5  years [36, 83, 84] 
because of forest regeneration. We excluded from model 
training the grid cells with logging and fire disturbances 
that occurred more than five years prior to the date of 
the image, because preliminary model fits indicated 
increased confusion for older disturbances.

Adhering to good practice of accuracy assessments as 
suggested by Olofsson, Foody [55], we report the accu-
racy of our classification by presenting the confusion or 
error matrix and the most common accuracy measures. 
These assessments are presented for the highest pre-
dicted probability of forest degradation class for each 
grid cell as if we had conducted a hard as opposed to a 
probabilistic classification: Overall accuracy, which is 
simply the proportion of the area mapped correctly. It 
provides the user of the map with the probability that a 
randomly selected location on the map is correctly classi-
fied. User’s accuracy is the proportion of the area mapped 
as a particular category that is actually in that category in 
the reference data. Producer’s accuracy is the proportion 
of the area that is a particular category in the reference 
data that is also mapped as that category.

Biomass estimates
To estimate grid cell-level biomass, we used high point-
density lidar data collected over or adjacent to the 
test sites [85]. In total, 8723 hectares of airborne lidar 
over intact, logged, and burned forests were included 

(Table  1). When classifying the lidar transects over 
degraded forests, no distinction was made with regard to 
time since disturbance. Biomass was estimated as above-
ground carbon density (ACD) from the lidar-derived 
top-of-canopy height at 50  m plot resolution (0.25  ha) 
using the methods detailed in Longo, Keller [60] and then 
resampled to 500 m resolution (25 ha) using the median 
values of the pixels in the 10 × 10 plot-equivalents, to 
approximately match the resolution of the classification 
predictors (Fig. 1, box 2). We reported the ACD estimates 
of Feliz Natal and Xingu sites together, because of their 
spatial proximity and similar ACD range.

Estimation of uncertainties
Monte Carlo simulation was used to quantify uncer-
tainty in grid-level aboveground carbon density estimates 
(Fig. 1, box 3). We performed simulations that accounted 
for uncertainty from two different sources: (i) ACD esti-
mation and (ii) forest degradation classification. The first 
simulation accounted for both sources of uncertainty 
(labelled ACD + Classification) and the second simula-
tion accounted for only uncertainty in ACD estimates 
(labelled ACD only). For each Monte Carlo iteration, 
individual grid cells were classified using the predicted 
class probabilities from the multinomial classification 
model. For the first simulation, cells were classified based 
on random sampling from the predicted probabilities 
and the second simulation classified cells by selecting the 
class with the highest predicted probability. ACD on a 
per-grid cell basis was then assigned by randomly sam-
pling from the associated site and degradation class car-
bon density estimates. Site-level carbon density statistics 
were computed for a total of 10,000 iterations.

The patchiness of disturbed forests implies some 
degree of spatial correlation on the landscape. One of 
the useful features of the Monte Carlo approach for esti-
mating uncertainty is that is rests upon few assumptions 
compared to complex geostatistical models, and provides 
an estimate of the uncertainty that is conditional on the 
complex spatial patterns of the landscape.

Results
GLCM textural metrics responded to forest degradation, 
although different metrics were most effective to high-
light logging and fires (Fig. 3). The entropy metric, which 
emphasizes contrasting edges, captured the roads and log 
storage decks in logging areas (Fig. 3C). The GLCM mean 
metric responded strongly to the diffuse changes visible 
in recently burned forests (Fig. 3E).

Probabilistic classification of forest degradation
We achieved high accuracy when we compared the 
most probable forest degradation class to reference 
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data reserved for testing the model (Table 2, Fig. 4). The 
overall accuracy of the multi-site model (a single model 
including data from the 3 test sites) was 0.86 (95% CI 
0.85–0.87), whereas the accuracies obtained for the indi-
vidual sites were 0.69 (95% CI 0.65–0.72), 0.93 (95% CI 
0.91–0.94) and 0.88 (95% CI 0.85–0.90) for Feliz Natal, 
Xingu and Saracá sites, respectively.

Producer’s and user’s accuracies for grid cells classi-
fied by the most probable degradation class were vari-
able among classes. The burned forest class showed the 

highest producer’s and user’s accuracy (Table 2). In con-
trast, there was greater confusion between intact and 
logged forest classes because canopy damage caused by 
logging can sometimes be subtle to optical sensors, and 
because apparently intact forests may be degraded by 
fragmentation.

Overall, we found a good match between the estimated 
classification and our reference data (Figs.  4 and 5). 
While our reference data do not include fire occurrences 
in the Saracá site, the fire class was selected for hard 

Fig. 3  Feliz Natal test site: entire PlanetScope image false color composite (red, near-infrared, green) (A), insets showing logging and fire events (B 
and D), and selected GLCM metrics for the same area (C and E). The fire occurred in 2017, and logging in 2017 and 2018; PlanetScope image is from 
2018

Table 2  Confusion matrix for the model using the 50% of the data held out for testing

Predicted classes are the rows and the reference classes are the columns. The main diagonal denotes grid cells which have been classified correctly and the off-
diagonal elements represent incorrect predictions

Class Reference Producer’s 
accuracy

User’s accuracy Overall accuracy

Burned Logged Intact Total

Predicted Burned 991 16 82 1089 0.88 0.91 0.86 ± 0.1

Logged 26 366 194 586 0.85 0.62

Intact 107 47 1612 1766 0.85 0.91

Total 1124 429 1888 3441
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(most probable) classification in 1.2% of the grid cells. 
Similarly, there were no logging occurrences in the Xingu 
site in the last five years; however, the logging class was 
selected for hard classification in 1.1% of the grid cells at 
this site (Fig. 5).

Biomass estimates for intact and degraded forests
The distributions of lidar-derived biomass estimates dif-
fered substantially among sites and degradation classes 
(Fig. 6, Table 3). The mean ACD for intact forests showed 
a two-fold difference between the combined Feliz Natal 
and Xingu sites versus Saracá. Interestingly, mean ACD 
is approximately 6% higher in logged forests than in 
intact forests in Feliz Natal and Xingu, but in Saracá, log-
ging caused mean ACD reductions of approximately 15%. 
In the combined Feliz Natal and Xingu sites, we observed 
an average ACD decrease of 35% in burned forests com-
pared to intact forests.

Combined uncertainties from biomass estimates and forest 
degradation classification
We estimated ACD for the study area by combining 
the ACD distributions for each forest class with the 

probabilistic forest degradation classification using a 
Monte Carlo simulation. We expected that combining 
the uncertainties of classification and the uncertainties 
of ACD estimation would increase overall ACD uncer-
tainty without substantially affecting means. Instead, we 
found that the uncertainties varied only slightly between 
the two approaches, but the mean ACD value was lower 
in all cases when the uncertainty of probabilistic classi-
fication was included (Fig.  7, Table  4). The uncertainty, 
as given by the standard deviation, was low in all cases, 
but always greater for ACD + Classification than for ACD 
only (Table 4). In Feliz Natal and Saracá sites, the ACD 
distributions from the two types of uncertainties did not 
even overlap, whereas distributions overlap considerably 
in the Xingu site.

Discussion
We presented an approach to classify tropical forest 
degradation based on VHR optical images and machine 
learning classification that achieved high accuracy on 
three distinct test sites. Generalizing this approach will 
require testing with reference data covering a wide range 
of terrain, forest types, and land-use characteristics. 

Fig. 4  Probabilities of class occurrence for each site, as predicted 
by the multi-site model, at each 562.5 × 562.5-m grid cell. No-data 
grid cells within the areas represent either masked areas or forests 
degraded more than five years prior to image acquisition

Fig. 5  Observed (left panel) versus predicted (center panel) classes, 
and incorrect class prediction (right panel) for the 562.5-m grid cells. 
The rightmost panels present the reference (correct) classification for 
the incorrect predictions
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Nonetheless, our results represent an advance towards 
improved forest degradation classification in the Ama-
zon. Combining improved classification and recent inno-
vations in carbon stock estimation using satellite sensors, 
future studies can undoubtedly improve our under-
standing of the role of forest degradation in the Amazon 
regional and pantropical forest carbon budgets.

Classification of degraded forests in the Amazon
In order to demonstrate the effectiveness of our proba-
bilistic classification, we treated the most probable class 
as a discrete output (i.e., a hard classification). However, 
mixed pixels with multiple land covers are rather com-
mon in the Amazon and represent a challenge to our 
forest degradation classification [86]. The probabilistic 
classification allowed us to take this characteristic into 
account. The challenge of mixed pixels gains importance 
when classified grid cells are larger. Moreover, a proba-
bilistic forest degradation classification allowed us to 

Fig. 6  Probability density function of lidar-derived ACD for the degradation classes and sites. There were no burned areas at the Saracá site nor 
logged areas in the Xingu site in the 5 years prior to the image acquisition for those sites

Table 3  ACD mean (and standard deviation) for each forest 
degradation class and site from lidar data and reference site 
classification

ACD units are Mg C ha−1

Class Feliz Natal and Xingu Saracá

Intact 89.2 (10.2) 185.3 (31.9)

Logged 93.9 (16.3) 156.8 (26.0)

Burned 57.9 (35.0) –

Fig. 7  ACD distributions considering uncertainties from ACD estimates only, and both ACD and forest degradation classification uncertainties

Table 4  ACD mean (and standard deviation) for each test site 
and uncertainty approach

ACD units are Mg C ha−1

Uncertainty approach Feliz Natal Saracá Xingu

ACD only 91.2 (0.23) 176.0 (0.82) 75.2 (0.38)

ACD + Classification 88.6 (0.30) 164.6 (1.26) 75.0 (0.40)
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explicitly incorporate the classification uncertainty into 
landscape ACD estimates. We used the information on 
the probability of class membership to indicate the confi-
dence associated with class allocation, indicating classifi-
cation reliability [87].

While we satisfactorily classified recent disturbances 
with Planet data (< 5  years), the spectral signal of dis-
turbance quickly fades due to the vegetation regrowth 
following fire and logging events [27, 36]. In contrast, 
structural changes (e.g. measured using airborne lidar) 
are much more persistent [80, 88]. To mitigate the tem-
poral limitation imposed by forest regeneration, we 
imposed a 5-year disturbance age cut-off. Implementa-
tion of this approach for operational monitoring would 
require frequent updates, preferably in intervals shorter 
than 5  years. The advent of easily accessible high fre-
quency VHR images such as those from the Norway’s 
International Climate and Forests Initiative (NICFI) Sat-
ellite Data Program makes this task feasible on a yearly 
or even perhaps more frequent basis, even for high-cloud 
coverage regions such as tropical forests.

We did not take into consideration the effects of over-
lapping disturbances in the classification. In hotspots of 
land use change such as the Arc of Deforestation, the 
effects of repeated fire and logging occurrences on bio-
mass are not independent [26]. For simplicity, we only 
used the most recent degradation event prior to the 
Planet image date to calibrate our classification model, 
but we acknowledge that disturbance history may affect 
forest degradation classification. In particular, forest fires 
may accentuate previous degradation patterns from log-
ging when they preferentially burn small stature regener-
ating vegetation on logging roads and log storage decks. 
In addition, selecting only the most recent disturbance 
may be affecting the corresponding accuracy metrics 
(e.g., the model could be correctly classifying previous 
disturbances, but this would be considered a misclas-
sification according to the reference data). Hence, forest 
degradation classification in regions with complex degra-
dation histories need to take these factors into account.

The variety of vegetation types with different canopy 
textures that co-exist in the Amazon biome also poses a 
challenge to classify degraded forests. Canopy structure 
affects textural metrics from remotely sensed images [89] 
and its effects on the GLCM metrics must be assessed 
when classifying degraded forests for the entire Arc of 
Deforestation.

The construction of reference datasets is a recurrent 
challenge for any remote sensing classification. Mak-
ing our approach operational would require both field 
and remote sensing expertise on the temporal and spa-
tial patterns of forest degradation. Nonetheless, there 
is an increasing number of researchers and staff from 

environmental agencies that possess this expertise who 
could contribute to the generation of these data.

Uncertainty in biomass estimation
We estimated ACD based on airborne lidar for different 
forest cover classes within each site.  Following Chave, 
Condit [90], the estimated uncertainty of our lidar based 
ACD estimates accounts for uncertainty in the for-
est inventory estimates of ACD used for model calibra-
tion, uncertainty caused by the limited regions surveyed 
by both the airborne lidar and the ground-based meas-
urements (representativeness), and the prediction error 
due to the ACD variance that cannot be explained by 
the fitted model [60, 91]. Similar to the findings of Chen, 
Vaglio Laurin [92], the model prediction uncertainty 
dominated this analysis.  The representativeness uncer-
tainty requires more attention. We used local data from 
the regions of Feliz Natal and Xingu as well as Saracá 
included in our ACD calibration, so we believe that rep-
resentativeness is a minor issue for this study. However, 
for tropical forests in general, representativeness of data 
used for calibration of remote sensing studies is a serious 
concern.  For most locations in tropical forests, the lack 
of ground-based forest inventory available for calibration 
could lead to large errors [93, 94].

We applied site-specific ACD distributions to repre-
sent the biomass in intact, burned, and logged forests at 
all three sites. Because we did not find any burned for-
ests at the Saracá site as part of our calibration effort, we 
had no distribution of burned forest ACD based on lidar 
data from that site. We applied burned forest ACD distri-
butions from Xingu and Feliz Natal for the Monte Carlo 
simulation for Saracá, which probably resulted in a bias 
towards low ACD given that the forests at Feliz Natal and 
Xingu had lower ACD compared to Saracá. Nonetheless, 
this bias had a limited effect on the site-level distribution 
because our probabilistic classification rarely estimated 
high probability of a grid cell being burned at Saracá site 
(about 1% of the study area, Fig. 4).

The propagation of uncertainty in forest degrada-
tion class together with uncertainty in ACD increased 
the uncertainty in the site-level carbon stock estimates. 
Unexpectedly, we found that consideration of both class 
and ACD uncertainty resulted in significantly lower 
mean carbon stock estimates in 2 out of 3 test sites 
(Fig. 7). Only the Xingu site showed similar ACD ranges 
with both uncertainty estimation methods, because it 
achieved the highest classification accuracy among the 
individual site models. We found no logging at Xingu 
in the reference data (Fig.  5) and the burned forest 
class showed the highest producer’s and user’s accuracy 
(Table 2). With minimal confusion between burned and 
logged classes at this site, there was no separation of the 
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site level ACD estimates as we found in the other two 
sites.

The complex forest degradation history contributes 
to this unexpected effect. When both classification and 
ACD uncertainties are considered, mean ACD declined 
at two of our three sites (Saracá and Feliz Natal). This 
occurs because many grid cells classified as logged also 
have a finite probability of being classified as burned. 
Burned forests have lower ACD than logged forests so a 
mixture of burned and logged ACD in the Monte Carlo 
simulation resulted in a lower overall ACD estimate at 
two sites where a substantial portion of the landscape 
was logged. This effect did not occur in the Xingu site 
where, to our knowledge, there is no logging. The change 
in estimated ACD when forest classification is considered 
will not necessarily occur on all landscapes. Nonetheless, 
this observed change serves as an additional warning that 
it is important to consider the uncertainty in forest clas-
sification when estimating regional biomass in tropical 
forests.

Overlapping degradation events in space and time may 
also have affected the biomass estimates for the degrada-
tion classes. For instance, our choice to consider only the 
last disturbance may lead to biomass underestimation in 
logged areas that experienced earlier fires or increased 
biomass variability in sites that experienced multiple 
fires. This is more likely to happen in the Arc of Defor-
estation region where Feliz Natal and Xingu sites are 
located, and less likely to happen in more remote areas 
such as the Saraca-Taquera National Forest. Logging and 
forest fires can lead to changes in tree species composi-
tion. Following disturbance, we expect a shift from more 
shade tree tolerant species that generally have high wood 
density to more light demanding species that have low 
wood density [95].  Simulations suggest that this shift 
can lead to overall losses in tropical forest biomass [96]. 
While our lidar calibrations included intact, logged, and 
burned forests, they did not include many sites that had a 
long history of recovery from disturbance because those 
are rare in the Brazilian Amazon and difficult to docu-
ment.  Additional measurements of forest composition 
and structure are needed to resolve how compositional 
shifts can affect calibrations for airborne lidar based 
ACD estimates.

Our approach does not necessarily  capture the bio-
mass changes associated with fragmentation. Fragmen-
tation leads to biomass loss on forest edges [49, 97–99]. 
Forest edges were included in our ACD distributions 
from earlier lidar data, so the effect of edges is implicit 
in our data. However, the loss of biomass from edges 
of intact forest is not contemplated in our analysis. 
We expect the effect of edges between degraded and 
intact forests to be smaller with larger edge effects in 

transitions from cleared areas to forests. Edge effects 
on biomass are also time varying [100] so we would 
need to consider time since disturbance to accurately 
quantify those effects. In particular, edge effects will be 
large in small forest fragments. Future studies incorpo-
rating explicit data on edge effects could better quantify 
the effects of fragmentation on forest biomass.

Conclusions
We employed a classification model based on very-high 
resolution images to classify degraded forests in three 
Amazonian sites and obtained global accuracy of 0.86 
on reserved test data not used in model training. Using 
airborne lidar data, we estimated biomass for intact, 
logged, and burned forests, and found that logged for-
ests showed variable biomass changes due to logging, 
and that burned forests showed an average biomass loss 
of 35%. Subsequently, we used Monte Carlo simulations 
to assess how forest degradation classification affected 
biomass distributions in degraded forests. Increased 
uncertainty in forest degradation classification also 
leads to increases in uncertainty of biomass esti-
mates. At two of three test sites, uncertainties in forest 
classification led not only to increased overall uncer-
tainty but to significant shifts in mean ACD across 
these sites. These findings imply that this attribution 
needs to account for the uncertainty in forest degrada-
tion classification.

Commercial satellite VHR images have been available 
for over 20 years. Considering the robust market for this 
product, similar or more sophisticated images should be 
available at low cost for decades to come. The application 
of our method combining medium and VHR resolution 
images with airborne lidar data can provide critical infor-
mation for national greenhouse gas inventories, because 
it allows the quantification, attribution, and estimation of 
uncertainties of carbon emissions associated with forest 
degradation through logging and fire.
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