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ABSTRACT

Airborne laser scanning (ALS) technology delivers large amount of data collected from airborne level. These data
are used for many different applications in forestry, civil engineering, environmental studies and others. To acquire
the best possible results from the data, accuracy analysis is a necessary part of data processing chain. Therefore,
considering the increasing interest worldwide in the use of laser scanning data, improving the quality control (QC)
tools is a crucial pursuit.

This study underlines the possible error sources, summarises the existing QC knowledge for ALS data and pro-
poses an optimised QC procedure. The procedure was implemented in selected applications and evaluated for three
different environments, namely, forests, rural areas and croplands.

The proposed solution is almost fully automatic outside from the module that supports the operator in the clas-
sification examination. The workflow is scalable and can be expanded with new modules that enhance the functional-

ity. The presented procedures can save up to 30 min of manual checks for every 1 km? area.
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INTRODUCTION

Airborne laser scanning (ALS) is a rapid, highly ac-
curate and efficient tool for capturing 3D topographic
data over large areas. Initially, ALS was developed to
provide accurate digital surface model (DSM) of the
Earth’s surface (Sterenczak et al. 2016). Very rapidly, it
has become a tool used in forestry (Maltamo et al. 2014),
geodesy (Haala and Kada 2010), geology (Wechsler et
al. 2009), archaeology (Chase et al. 2011), environmen-
tal management (Vierling et al. 2008) and urban plan-
ning (Xiong et al. 2013). The ALS point cloud is an

example of high-density vector spatial data. Each point
in the point cloud is described by geometric and non-
geometric information such as coordinates, intensity
values, number of returns and others. Wu et al. (2011)
mentioned that the first step in the ALS data quality
control (QC) should be to validate the correctness of all
the acquired information included in ALS data files.
The term ‘quality’ may have two contextual mean-
ings in relation to ALS data as regards to ‘quality assur-
ance’ (QA) and QC (Habib et al. 2009). QA is performed
in advance of an acquisition and is concerned with
management activities ensuring that a process, item or
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service achieves the quality the user requires (Renslow
2012). A key activity in the QA context is the calibra-
tion process that eliminates possible errors originating
from the ALS system components. The most common
errors of this kind are biases and random errors in the
spatial and rotational offsets (Habib et al. 2010). During
the calibration process, errors are calculated and con-
sidered in the final measurements in real projects.

The QC process is, in turn, conducted following
a measurement mission or during the final data process-
ing, with a view to verify the quality of the collected
data. QC concerns an external (absolute) quality verifi-
cation or an internal (relative) quality verification (Ha-
bib and Rens 2007). External data checking is based on
comparison of ground control points with the ALS data.
This analysis offers information regarding the integra-
tion of the collected data with the global coordinate
system. The relative accuracy reports on data internal
integrity are determined by reference to differences be-
tween single ALS flight strips.

The QA is dependent on provider or service preci-
sion during the calibration process. It is different from
the QC focused on in this study that is correlated with
the end-user needs and the capabilities of the data pro-
viders. ALS data need to be checked because assur-
ances should be provided that the data has indeed been
obtained with the required quality. More importantly,
there is a need to ensure that future analyses will be
trustworthy and carried out based on the best possible
data.

The ALS data are mostly obtained in overlapping
strips. Data overlapping allows the entire project area
data to be connected into one geometrically consistent
block. The quality of this connection is determined by
relative accuracy by identifying the 3D shifts (on the X,
Y and Z axes) between the strips. There are many possi-
ble error sources between two strips (Zhang et al. 2013)
but a significant reason for an object to shift is the flight
direction (Ahokas et al. 2004). Relative accuracy deter-
mination between ALS data strips is mainly carried out
using an object that was mapped in overlapping areas
of the strips. The most common methods for evaluation
use roof ridge lines (Habib et al. 2008; Wezyk 2014)
buildings (Ahokas et al. 2004) or roof faces (Filin 2003).
In the case this type of feature is lacking, quality checks
are performed using other planar surfaces such as roads
(Maas 2002), parking lots or courts. When it comes to

forest areas, canopy gaps or forest roads may be used
as tie features. In many approaches, the segmentation
procedure is used to extract the required surfaces to
measure the shift between strips like the least-squares
matching (LSM) (Gruen 1985), 2.5D grid comparison
(Behan 2000), statistical computations (Latypov 2002)
and profile view analysis (Bowen et al. 2002).

On the other hand, absolute accuracy assessments
are performed to check how the ALS data were pro-
jected to a coordinate system. The accuracy is affected
by the accuracy of scanning, positioning and navigation
systems (Glennie 2007), the flight altitude of the sensor
and platform, the characteristics of the scanned terrain,
as well as the atmospheric conditions (Alharthy et al.
1999; Liu et al. 2008; Maas 2003). The horizontal and
vertical accuracy of the ALS data are among the main
factors used to determine the accuracy of the generated
products such as DEMs (Liu 2011). The control methods
of those errors are mainly based on the comparison of
the features which can be located on ALS and measured
in the field with Differential Global Positioning System
(DGPS) or total station. Building roof planes or cor-
ners, and planar surfaces such as parking lots or courts
were indicated by Maas (2003) as the most suitable for
this purpose. Alharthy et al. (2004) proposed the use
of drainage ditches for horizontal accuracy validations.
Many authors mention that obtaining suitable objects
for vertical accuracy evaluation is problematic (Bowen
and Waltermire 2002; Alharthy et al. 2004).

One of the most important features that describe
the details of the ALS data is the point density. In the
United States Geological Survey (USGS) standard
(Heidemann 2014), the point density is described as
the Nominal Pulse Density (NPD) and is measured as
the average number of pulses sent per specified areal
unit, most often expressed as pts/m? (Wu et al. 2011;
Rupnik et al. 2015). A point cloud with a higher den-
sity allows the creation of products with higher reso-
lution (Lari et al. 2012). Methods for point density
verification are mainly based on spherical neighbour-
hood analysis, eigenvalue analysis, Adaptive Cylinder
Method (Lari and Habib 2012), box counting method
(County 2003) and TIN-based (Triangulated Irregular
Network) method (Rupnik et al. 2015). Methods using
raster solutions should be considered where informa-
tion about the point density in a specific area is needed.
They are fast and give general information about the
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point density and area coverage. Solutions that analyse
a point cloud in 3D space are excellent for determining
the 3D distribution of points. We should also remem-
ber that within the project area, there might be areas
without registered point clouds. These regions can be
in a forest with a dense canopy, above water bodies, on
roads or on objects made from non-reflecting or mir-
rored materials such as building roofs. An area over
where no points are measured (Luethy and Ingensand
2004) is called a data void. These kinds of obstacles
affect the quality of the DTM (Digital Terrain Model)
and DSM (ALS data products) and should be separated,
for example, by a method using image region growing
proposed by Wu et al. (2011). We should also remember
that the data void sizes and the point cloud density are
important descriptors relating to data quality (Lari et
al. 2012).

The point cloud from the ALS system contains
points describing the surface of the Earth. To extract
from these data the groups of points describing differ-
ent classes of objects, a classification process should be
performed. As a result of the classification, every point
is assigned to one of a selected number of land cover
classes. Most often, the classification process is done
automatically and the errors are corrected manually. We
can verify the classification accuracy in many ways, but
the main problem is the availability of reference data.
The referenced data could be the manually classified
point cloud data (Kim and Sohn 2010), alternative clas-
sification methods (Wezyk 2014), orthophoto (Yan et al.
2012), aerial images (Antonarakis et al. 2008), 2D vec-
tor databases (Matikainen et al. 2009) or manually dig-
itised vector layers (Tran et al. 2015). The most common
metrics to describe classification accuracy are the over-
all accuracy (OA) and Kappa (Guo et al. 2015). These
values are commonly used in image-based remote sens-
ing classifications (Congalton 1991). There is a lack of
sufficient automatic methods for verifying classification
accuracy, leaving ALS data classification quality con-
trollers many files to check. Manual control methods
are time-consuming and as such, the point classification
of the data is only checked visually to eliminate gross
and systematic errors (Wezyk 2014). Therefore, clas-
sification accuracy is usually verified using randomly
spread and representative samples (Yan et al. 2012).

The quality of ALS data is currently controlled in
standard industrial processes. Various control processes

are described in the QA reports (Groundpoint Technolo-
gies 2010; Dewberry 2014; URS Corporation 2012) cre-
ated by the data providers or product quality standards
(Polish Ministry of the Interior and Administration
2011) legislated by national institutions and they reflect
the end-user needs. QA reports did not contain a uni-
form control procedure covering all QA aspects and
were mainly based on manual workflows performed us-
ing commercial software. None of the proposed work-
flows dealt with the full data checking problem. Very
few of the reports described the methods for performing
semi-automatic or automatic checking process.

Therefore, in this study, we aimed to create a semi-
automatic comprehensive ALS data control workflow
that can be implemented by the end-users. The aims of
the work detailed in this study are to review the exist-
ing methods for ALS data QC, to propose certain steps
in the verification or quality checking procedure and
to verify the results of the proposed QC procedure and
discuss the possible benefits. A proposed procedure has
been tested for selected land cover types.

MATERIALS AND METHODS

The developed ALS data quality checking workflow
was tested in three regions with different land cover
types. The first type presents an urban area located
near a forest with small village constructions typical
for Biatowieza in Poland. The second was acquired for
a forest area, and the last for an open space (a field).
Every region had an area of 30 ha. The ALS data for
each area were acquired in July 2015 using a Riegl
LMS-Q680i system with a nominal point density of
6 points/m?, A 25-cm footprint size resulted from
a flight altitude of 500 m.

A schema of the proposed QC workflow is pre-
sented in Figure 1. The workflow assumes that checks
on all levels are performed one after the other. If data
do not pass any level, they are reported. Corrected data
are checked again on all levels and accepted if the re-
quirements are fulfilled. The first four levels are fully
automatic, allowing for multiple repeat verification of
large datasets without operator intervention. Only the
last level (classification checking) is a semi-automatic
and marks places where errors occurs. Indicated errors
requiring manual visual verification.
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Figure 1. Workflow for the proposed ALS data quality
control process

Automatic checking of overlap between strips

The points from the point cloud with the same ID are
surrounded by a polygon using a concave hull, creat-
ing footprints of ALS strips. The generated footprints
are used to check the overlap percentage between them.
The overlap is calculated for all neighbouring strips.

Automatic verification of data correctness

The component checks if the file can be opened. In valid
files, it verifies if each point has an RGB and intensity
value or the assigned values do not exceed the expected
range (e.g. 12 bits). The component checks also the den-
sity of the ALS point cloud in default 5 x 5 m grid cells,
but the size of the minimum unit can be adjusted to
specific needs. In the first step, the first returned points
from the point cloud are selected and a specified grid
layer for the entire ALS area is created. Every pulse is
counted and assigned to the grid cell. In the next step,
the values per square metre are calculated and a raster
of the density is generated.

The number of points in each cell from the density
check is next used to calculate the coverage. The cover-
age informs about the percentage of the area that satis-
fies the defined point cloud density threshold.

In forested areas, it is very important to have a large
proportion of points reflected from the tree crowns to
better describe their structure. A low number of points
describing tree crowns can be caused by strict filtra-
tion settings. The proposed method checks a parameter
that describes the percentage of all points that should
be measured between the first and last returns in tree
stands of defined heights. In the proposed procedure,
multi-return checking is performed in an area where
the vegetation has a height greater than 25 m. The
number of returns between the first echo (FE) and the
last echo (LE) should equate to 25% of the returns. In
the proposed method, DSM is generated from a point
cloud. The DSM serves to create regions from the
pixels where the height value exceeds the 25-m limit.
Afterwards, the ALS points intersecting with the gen-
erated regions are selected and the number of points
between the first and last returns is divided by the total
number of points.

Relative accuracy between strips

The developed algorithm used two attributes of the
point cloud: the class of the points and the ID of the
strip. At the beginning, all ALS tiles are merged to
single strips based on the IDs. Afterwards, from each
strip, the points classified as buildings are extracted.
The normals are then calculated for each point by ana-
lysing the eigenvectors and eigenvalues of a covari-
ance matrix created from the nearest neighbours of
the query point (Rusu 2010). Next the region-growing
method is used to join together points representing
a single surface based on the angle between the nor-
mal points. From among the grouped points, those
occupying areas larger than 50 m? are then selected.
Analysis of the relative accuracy based on gabled roofs
is done, and the clustered groups of points describing
it have to be paired together. Groups describing roofs
are joined if they intersect and their normal vectors are
perpendicular, with a tolerance of £20°. Groups paired
with each other (describing the gable roof) are used in
the next step of the algorithm, where for every clus-
tered point (representing single roof surface), a plane
model is fitted using the Random Sample Consensus
(RANSAC) algorithm (Fischler et al. 1981). The plane
models in paired groups of the point are intersected
and a linear model is calculated. The described algo-
rithm for generating the linear model is used for every
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strip. Finally, the lines from each strip are compared
to those near each other and then connected. The con-
nected lines are divided into two sets running in the
N-S and W-E directions, so that the translation be-
tween strips on the X- and Y-axes may be checked.
The average distance for each line pairs is calculated
before the RMSE (Root-mean-square error) in the X
and Y directions for the data can be subsequently cal-
culated. Ultimately, the operator receives the report as
a shapefile containing lines with attributes describing
the accuracy checks.

The previous method is dedicated for use in are-
as where there are buildings. For areas without well-
defined human-related objects, planar surfaces can be
used only for vertical accuracy assessment between
overlapping strips. In this proposed method, first for
each strip, the ground points (class 2 in LAS classifi-
cation) are extracted. From the ground points, DTMs
are generated for every strip and filtered with a median
(9 x 9) filter. The filter window size can be modified.
A filtered DTM is subtracted from the unfiltered DTM.
Based on the subtracted raster, the mask containing 0—1
values is obtained (with 0 indicating non-flat areas and
1 indicating flat areas). Areas are defined as flat if the
difference between both DTMs is lower than 0.05 m.
In the overlapping areas of the strip, raster with values
of 1 (flat) are converted to a vector layer. In the mean-
time, a 2.5-m grid net is generated and intersected with
the resulting vector layer. Net tiles occupying less than
100% by flat areas are deleted. Among the generated
‘flat’ tiles, some (such as those representing road lay-
ers) are selected for further calculation. For the tiles
belonging to each strip, the mean values of the pixels
are collected. Finally, the difference between the strips’
Z values is calculated.

Absolute accuracy

Checking the absolute accuracy can be performed in
parallel with the relative accuracy by checking the po-
sition of building edges. However, the reference edges
should be measured in the terrain using a total station.
Next, the roof edge measurements are compared with
the ridges assigned by the RANSAC algorithm. The
workflow is the same as previously described for the
relative accuracy. The edges need to be measured across
and along the ALS flight lines in order to verify the ac-
curacy in both directions.

When there are no buildings in the area of inter-
est, a good solution for the vertical accuracy checking is
the use of a DTM interpolated from the ALS data. This
solution depends on the creation of cross-sectional pro-
files and includes four main steps. Firstly, control points
on the ground are designed along different types of flat
objects such as roads, fields, pavement and other similar
objects. Ground control points are then measured by the
total station or DGPS. In the next step of the process,
a DTM is created from the ALS data. Finally, the height
values from the DTM characterising the ground control
points are extracted and compared with the height val-
ues of the field-based (referenced) measurements.

Automatic checking for data voids

The developed algorithm for checking data voids is
very similar to the region-growing method presented
by Wu et al. (2011). In contrast to Wu et al. (2011),
our solution used the grid reclassification and GIS
(Geographical Information System) tool for data void
polygonisation.

First, the point cloud is transformed to a raster
layer containing information on the number of points
measured in each cell, such as the density information.
The default density raster resolution is 1 m, but can be
changed by the user based on the point cloud density.
Next, cells with values greater than 0 are changed to no
data cells and the other cells are changed to data voids
polygons. The number, size and distribution of the gaps
can be a proxy for data quality and if needed, areas with
large amounts of data gaps should be excluded from the
analyses.

Point cloud classification verifications

The proposed semi-automated solution for ALS point
cloud classification control is designed to identify po-
tential error locations for later visual verification. The
developed solution focused only on two classes of
points: vegetation (classes 3—5) and buildings (class 6).
First, in the algorithm, the height levels of the vegeta-
tion classes are checked (LAS classes = 3 [low vegeta-
tion], 4 [medium vegetation], 5 [high vegetation]), and
therefore, the point cloud is normalised using the DTM.
Next, based on the normalised height and class of each
point, an algorithm verifies how many points are clas-
sified correctly with respect to the height threshold val-
ue for each vegetation class. Finally, the proportion of
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points classified incorrectly among all points in a class
is calculated.

Other possible errors are related to cases where
vegetation is classified as a building, buildings are clas-
sified as vegetation, or (as the last common failure)
vegetation is classified as part of a flat surface. In the
proposed solution, the classes describing vegetation
(3, 4, 5) and buildings (6) are first selected from the
point cloud. These selected points are then used to cre-
ate two maximum height raster layers from points of
the vegetation class and from the building points. The
created rasters are then subtracted from each other. No
data cells in the difference raster means that buildings
and vegetation do not coincide with each other. If the
cell value is greater than 0, then vegetation has been
above the buildings. It is a situation usually noticed in
forests when the points describing the trees are classi-
fied as buildings. On the other hand, if a value is below
0, then the vegetation has been placed under a building;
it can be true in some circumstances (walls of buildings
classified as vegetation). In the final step, the proposed
algorithm requires the operator to decide if the error is
relevant or not. The operator should check all marked
locations manually.

REesuLts

The proposed ALS data control workflow was imple-
mented within a specially created package of tools called
LasControl. After each step in the process, a report with
the results of the data control was generated. Values ex-
ceeding the limits defined by the user were marked red
as potentially incorrect as shown in Figure 2. In some
cases, the algorithm generated raster maps presenting
the point cloud density for each analysed sheet to sup-
port the operator in checking the classification.

We tested all steps of the verification tool on three re-
gions (forest, rural and open sites), seeking to determine
which of them was appropriate in relation to land cover
types.

For each test site, the point cloud density was
checked. The most homogenous results were acquired
for the crop field. This was expected because there is
no other object on the ground apart from small veg-
etation. This land-use type had the highest density of
11.2 pts/m2. The lowest point cloud density (9.8 pts/m?)
was noticed for the rural region, where a lot of differ-
ent man-made objects as well as a variety of vegetation
were noticed. In the forest, the point cloud density was
11 pts/m>.

The forest area and crop sites were covered by
a point cloud with density greater than 6 pts/m? in more
than 95% of the area (96.4% and 95.3%, respectively).
Only the rural site had lower coverage (91.4%) resulting
from the presence of water bodies on the site. The water
reservoir absorbed the laser beam signal and the points
were not collected from its surface. The location of the
water reservoir is clearly visible in white on the point
cloud density map presented in Figure 3.

For all the checked files, the RGB and intensity at-
tributes of the point cloud were correctly written. The
point cloud returns between the first and last in all sites
accounted for over 50% of all returns.

The test site had regions without measurement
points. The largest summary area (11,649 m?) without
points was located in the rural area as a result of wa-
ter bodies located in the site. The largest single no-data
area in this site was 8,570 m2. A small area with no-
data occupied 1,219 m? in the crop site. In the rural site,
a single group of no-data values occurred, which ap-
peared at the place where the flight strips were joined.
On all sites, the no-data regions ranged between 0.5 and
3.0 m2.

Is Correct? Name File ]?;/nnsllzt]y CO‘[:)Zr]a £e Class[i(%ation Intenisty | RGB RF;? ]rn
1 1 FOREST N-34-120-D-c-3-2-2-4 11.0 96.4 99.9 T T 52.8
2 0 FOREST_N-34-120-D-c-4-4-3-4 10.4 94.7 99.8 T T 55.3
3 0 CITY_N-34-120-D-c-4-1-2-4 9.8 91.4 98.0 T T 58.6
4 1 CITY_N-34-120-D-c-3-1-1-3 10.3 97.0 99.4 T T 51.5
5 1 GROUND _N-34-120-A-c-4-4-3-1 11.2 95.3 99.6 T T 75.0

Figure 2. An example of a report generated for the tested data
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Figure 3. Density map for the rural area (5 m raster
resolution)

The horizontal and vertical relative accuracy
checking between strips could be performed only on
the rural site due to the presence of buildings. The ac-
curacy between the strips in this area was 4 cm horizon-
tally and 15 cm vertically. For the forest and crop site,
only the vertical accuracy could be checked because on
this location, there were no objects that could be used
as a reference. The vertical accuracy for these sites
reached 1 cm.

Using the semi-automatic method for classification
checking, only two sites were found with errors in the
point classifications. For the forest sites, some points
describing trees were classified as buildings, and in the
rural area, some points were classified as trees when,
in fact, they were measured on buildings. In the sec-
ond case, the points were incorrectly classified almost
always on building walls.

DiscussION AND CONCLUSION

Tests performed on the example sheets of a point cloud
showed that all types of terrain may be subjected to
the checks involving strip coverage, correctness and
data voids. Automatic accuracy checks can be applied
to all data acquired in different land cover, although
only the relative and absolute accuracy of the Z coor-
dinates can be checked on flat areas using the raster

solution. To horizontal accuracy evaluation in a point
cloud should be visible ridges of buildings that are
relatively measured on two strips or in the terrain. The
best solution is to measure building’s ridges arranged
perpendicularly to each other. Places suitable for this
may occur in either urban or rural areas. The final con-
trol checks are dedicated to just two types of locations
in which two implemented cases can arise, such as in
an area where the points reflected from buildings are
classified as vegetation and in forest areas where the
points acquired between trees can be marked as in the
building class.

To acquire good quality of analyses, the ALS data
need to be correctly collected and processed. Correct-
ness can be determined following a control evaluation.
The QC and checking process should be a standard
procedure connected with provider post-processing to
confirm the quality of the prepared data. The end-user
should also be aware of the data quality. The best so-
lution is an easy control procedure allowing for data
checking using automated and semi-automated meth-
ods. Automation minimises the time needed for visual
and manual interpretation by an operator. As a conse-
quence, the time needed for data checking and the elim-
ination of post-processing errors that cause erroneous
results is reduced. The correct workflow of the consecu-
tive steps allows the data control to focus on moving
from the general to the detailed parameters of a point
cloud. A standard control protocol makes the data ac-
quisition a more stable process and allows for faster
data use.

In our solution, we first performed a procedure that
was suggested by Wu et al. (2011) to verify the correct-
ness of the ALS files. The methods we used were in-
spired by the methods described in the literature and
included a point density check in a regular raster grid
(County 2003) and absolute accuracy checking us-
ing roof ridges (Ahokas et al. 2004; Habib et al. 2008;
Wezyk 2014). Our solution can save up to 30 min of
manual checking for each 1 km? area. More time can
be gained in the case where automatic checking pro-
cedures not requiring operator intervention beyond the
definition of control parameters can be applied. Check-
ing the point cloud classifications only requires the in-
volvement of operators in the visual interpretation of
the sets or some percentage of the data. Automation
of the data verification is very difficult because it is hard
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to implement a solution that captures all of the errors.
The developed solution only highlights locations where
certain obvious errors can occur, thereby supporting the
person supervising the process. Automatic tools are rec-
ommended for projects covering terrain areas of more
than 10 km?, where up to a few days of verification work
can be saved.

A very important module in data control is the de-
termination of void data areas. The occurrence of these
areas influences the quality of the DTM interpolation.
In cases with forested areas, the point cloud density is
very low and the accuracy of the DTM interpolation
is lower than in rural or urban locals. For forest sites
with no measurements, we can conclude when the data
was acquired. Data void areas may also be used to find
the places where existing land cover is less laser beam
reflective, such as in water reservoirs.

We presented procedures used to check multiple
datasets from real projects. The workflow allows to de-
tect and eliminate all of the defined errors. This is done
in close cooperation with a data provider having full
access to the description of the procedures. The control
rules and methods ensure transparent cooperation, and
data improvements, in our case, were easy and without
unnecessary disputes or inconsistencies. The present-
ed solution is fully automatic outside the module that
may be supported by the operator for checking classi-
fications. The solution workflow is scalable and can be
expanded to include new modules that enrich the func-
tionality.

Considering the increased interest in the use of
laser scanning data, procedures and tools for QC are
needed worldwide. Such standard procedures and tools
presented here can be used in many different projects
where the data are acquired for multiple purposes. The
tools allow the user to select the modules needed for the
purposes and to define the checking parameters.
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