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Improved dryland carbon flux predictions with
explicit consideration of water-carbon coupling

Mallory L. Barnes 1B Martha M. Farella!, Russell L. Scott?, David J. P. Moore3, Guillermo E. Ponce-Campos3,
Joel A. Biederman® 2, Natasha MacBean?, Marcy E. Litvak® & David D. Breshears3®

Dryland ecosystems are dominant influences on both the trend and interannual variability of
the terrestrial carbon sink. Despite their importance, dryland carbon dynamics are not well-
characterized by current models. Here, we present DryFlux, an upscaled product built on a
dense network of eddy covariance sites in the North American Southwest. To estimate
dryland gross primary productivity, we fuse in situ fluxes with remote sensing and meteor-
ological observations using machine learning. DryFlux explicitly accounts for intra-annual
variation in water availability, and accurately predicts interannual and seasonal variability in
carbon uptake. Applying DryFlux globally indicates existing products may underestimate
impacts of large-scale climate patterns on the interannual variability of dryland carbon
uptake. We anticipate DryFlux will be an improved benchmark for earth system models in
drylands, and prompt a more sensitive accounting of water limitation on the carbon cycle.
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influence on both the trend and interannual variability in

the global terrestrial carbon sink!2, yet land surface and
remote sensing models of primary production perform poorly in
these regions>=>. Dryland ecosystems are distributed throughout
the world and occupy 40% of global land area®. During the early
development of Land Surface Models, model tests were more
common in temperate and tropical ecosystems than in arid
regions (e.g.””® and many early Land Surface Models did not
distinguish critical dryland plant functional types®~1>. Addition-
ally, dryland ecosystems are often poorly represented in datasets
used to drive and calibrate remote sensing-based models of pri-
mary production!®. Accurate representation of dryland carbon
dynamics in global-scale process- and remote sensing-based
models could improve the accuracy of terrestrial carbon sink
estimates and advance our understanding of the global carbon
cycle.

Several key features of dryland ecohydrology, phenology, and
biogeography make it particularly challenging to predict carbon
dynamics in these systems. Drylands are highly sensitive to var-
iations in water availability!”, and persistent water limitation in
these systems has resulted in physiological adaptations that lead
to tight coupling of biogeochemical and water cycles®!8-20.
Interannual variability in dryland precipitation can exceed 50% of
mean annual precipitation, compared to 5-10% in more mesic
systems, resulting in high interannual variability in dryland car-
bon uptake?!. Strong sensitivity to highly variable hydroclimatic
conditions can also manifest in ‘flashy’ ecosystem responses:
rapid carbon uptake and growth in response to precipitation
pulses?>23. Flashy responses to moisture inputs propagate at
longer timescales in drylands, relative to more mesic systems, and
strongly influence annual carbon uptake?3-2>. Drought, defined
here as moisture stress that impacts ecosystem functioning?®, is a
particularly impactful and increasingly prevalent water avail-
ability condition in drylands?’. Drylands also have high degrees
of spatial heterogeneity, with diverse ecosystem types and
moisture regimes contained within a single model pixel, which
further complicates modeling efforts!>14.  Although existing
models are designed to represent patterns of the global carbon
cycle, they are not attuned to these key features of drylands.
Dryland carbon uptake strongly influences the variability of the
global terrestrial carbon sink! and the magnitude of interannual
variability in dryland carbon uptake is likely underestimated by
existing models of productivity!®.

Here we used satellite and gridded climate observations,
measurements from eddy covariance towers, and machine
learning to predict spatial and temporal patterns in plant carbon
uptake via photosynthesis (gross primary productivity; GPP). We
upscaled carbon flux observations using remotely sensed and
gridded meteorological inputs to produce spatially and tempo-
rally continuous high-resolution estimates of GPP3-30. Existing
continental and global upscaled products, including the
FLUXCOM3! and FluxSat>? products, were designed for
continental-scale and global analysis and are generally based on
remotely sensed estimates of photosynthetically active vegetation,
such as the fraction of absorbed photosynthetically active radia-
tion (fAPAR) and vegetation indices like the normalized differ-
ence vegetation index (NDVI). The global Moderate Resolution
Imaging Spectroradiometer (MODIS) GPP products are based on
satellite data and include biome-specific light use efficiency values
and atmospheric demand scalars, but still rely heavily on mea-
sures of satellite greenness. These models do not include
important ecohydrological controls over carbon dynamics in
drylands, such as explicit representation of water limitation or
antecedent moisture conditions. To accurately project changes in

D ryland (arid and semi-arid) systems have a dominant

the global carbon cycle, we need models that sufficiently represent
seasonal and interannual variability in dryland carbon dynamics.

The southwest region of North America is an exemplary
location to develop a model tuned to drought-carbon dynamics
because of its high spatial heterogeneity, including broad bio-
geographic regions (California Mediterranean, Intermountain,
and Mojave, Sonoran, and Chihuahuan deserts); complex topo-
graphy and associated ecological transitions (grasslands, shrub-
lands, and forests); and a large degree of variation in precipitation
and climate regimes (i.e., a gradient from winter- to summer-
dominated precipitation regimes and mean annual precipitation
range from 100 to 700 mm). In this study, we evaluated the
heterogeneous, region-wide sensitivity of carbon uptake to cli-
mate in Southwestern dryland systems. Since drought is a pre-
valent mode of water availability in drylands that is projected to
increase in frequency and intensity in the future, we explicitly
accounted for drought and other moisture anomalies in our
approach. We evaluated the heterogeneous, region-wide sensi-
tivity of carbon uptake to climate and used this sensitivity to
estimate spatial and temporal responses of carbon uptake in
dryland ecosystems to global patterns of moisture anomalies. We
used a network of 24 dryland eddy covariance sites in the
Southwest (southwest United States and northwest Mexico)
representing diverse dryland ecosystems and climate spaces!?
(Supplementary Fig. 1) to develop a machine learning model that
predicted GPP.

Our product, DryFlux, is specifically tuned to key ecohy-
drological characteristics of dryland systems33. Our approach
focused on accounting for the tight ecohydrological coupling
between water and carbon cycles in drylands to represent the
seasonal and interannual variability in carbon uptake in these
systems. A crucial difference between our upscaled product and
other remote sensing-driven upscaled flux products is the explicit
consideration of the impact of antecedent moisture conditions
(through the inclusion of previous months’ precipitation and the
Standardized Precipitation Evapotranspiration Index (SPEI) at
various temporal windows as predictors) on GPP. Our approach
consisted of two main components: first we derived relationships
between climate and vegetation predictors with GPP from flux
towers using the random forest machine learning algorithm, and
second, we applied the trained model to remotely sensed data
inputs to generate spatially and temporally continuous carbon
uptake estimates from 2000 to 2016 at 0.5° spatial resolution. We
compared our DryFlux product to a machine learning upscaled
project, FLUXCOM3!, and the MODIS GPP data product
(MOD17A2H v006), which are widely used to evaluate terrestrial
primary production in Land Surface Models3435.

Results and discussion

DryFlux more accurately characterized inter- and intra-annual
variation in dryland GPP than both FLUXCOM and MODIS
GPP (Fig. 1). Representation of interannual variability in DryFlux
GPP across Southwest sites exceeded an R? of 0.9 in 18 out of
24 sites, compared to 1 out of 24 sites in the FLUXCOM GPP
estimates (Fig. 1a, b and Supplementary Table 1). The relation-
ship between modeled (DryFlux) and observed (tower) monthly
GPP for 2000-2015 with DryFlux had an R? of 0.88 across all
sites, compared to R%2=0.43 for FLUXCOM and R?=0.41 for
MODIS GPP (Fig. 1c). DryFlux predicted large-magnitude GPP
months better than MODIS GPP or FLUXCOM, maintaining
accuracy at high levels of GPP based on the slope of the linear
regression between modeled and observed GPP (Fig. 1g
m =0.88). The FLUXCOM and MODIS GPP products con-
sistently underestimated months with high GPP values (Fig. 1c;
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Fig. 1 DryFlux model performance. a Coefficient of determination (R2) between annual FLUXCOM GPP and annual tower GPP (gCm~2) for all flux sites.
Sites are colored by vegetation class, with diagonal hash mark indicating sites left out of model building (testing sites). The dashed horizontal line indicates
an R2 of 0.9 to facilitate visual comparison of model performance. Sites are arranged according to MAP, with MX-Lpa having the lowest MAP (182 mm)
and US-Vcm having the highest (724 mm). b Same as (a) but R2 between annual DryFlux GPP and tower GPP. ¢ Relationships between modeled GPP and
observed monthly GPP. Monthly (in gCm—2 day~") FLUXCOM GPP (teal), MODIS GPP (green), and DryFlux GPP (dark gray) and the associated linear
equations are displayed, with the 1:1 line between modeled and observed GPP in black. d-f Accuracy of DryFlux GPP seasonal cycle compared to observed,
MODIS, and FLUXCOM GPP for a representative grassland (d), shrubland (e), and forest (f) site. The seasonal cycle is represented as the average monthly
GPP (in gCm~2day~") for all available site years. Lines represent: observed (brown), DryFlux (dark gray), MODIS (green), and FLUXCOM GPP (teal). Error

bars represent one standard deviation above and below the monthly mean.
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m =0.48 and m = 0.45, respectively). DryFlux, which explicitly
incorporates ecohydrological water—carbon coupling, showed
improved estimates of interannual variability and seasonal
cycling. DryFlux accurately reproduced the dynamic seasonal
cycle of GPP in sites representing the dominant vegetation cover
types typical of dryland regions including: semi-arid forests,
shrublands, and grasslands better than either FLUXCOM or
MODIS GPP (Fig. 1d—f). DryFlux better captured seasonal var-
iation in dryland fluxes than FLUXCOM or MODIS at 23 of 24
Southwest sites based on the correlation coefficient between
modeled and observed values (Fig. 1 and Supplementary Fig. 2).
DryFlux also better captured within-season variation in dryland
fluxes than FLUXCOM or MODIS (at 22 of 24 and 24 of 24
Southwest sites, respectively; Supplementary Fig. 2). Character-
ization of the seasonal cycle of GPP captured the flashy seasonal
dynamics of GPP in grasslands, shrublands, and forests related to
intra-annual changes in water supply with both the preceding
month’s precipitation and the current month’s potential evapo-
transpiration (PET) emerging as important predictors in the
random forest models (Supplementary Fig. 3). Accurate repre-
sentation of land cover, particularly in highly heterogeneous
dryland regions like the Southwest, is important for generating
estimates of carbon fluxes. Due to challenges in spatial resolution
and classification accuracy, land cover maps can be a major
source of uncertainty in regional-scale upscaled flux estimates°.
In DryFlux, we chose to include mean annual precipita-
tion. (MAP), mean annual temperature (MAT), elevation, and
vegetation indices in lieu of a land cover classification. Both MAP
and vegetation indices like NDVI were important predictors
(Supplementary Fig. 3), implying these variables captured spatial
heterogeneity in vegetation in the Southwest. DryFlux captures
the typical bimodality in Southwest ecosystems—the summer
peak driven by monsoon rains in grasslands (Fig. 1d), shrublands
(Fig. le), and forests (Fig. 1f), and the springtime GPP peak
driven by snowmelt in high-elevation forests (Fig. 1f and Sup-
plementary Fig. 4). While snowmelt was not a predictor in our
model, the model’s strong performance at high-elevation forest
sites implies other predictor variables provided information
related to the onset of springtime GPP.

Although improved model performance in the North Amer-
ican Southwest is expected (since our model was specifically
trained in this region), investigation of model performance
metrics revealed the importance of ecohydrological coupling in
drylands. DryFlux accurately captured the large degree of inter-
annual GPP variability in Southwestern drylands (Fig. 2). There
was a large degree of variation in observed GPP values across all
sites with the largest amount of variation observed in forests
during the summer months (0= 1.19) and savanna/shrublands
having the least amount of variation (o = 0.94; Fig. 2a). DryFlux
represented more variability than the MODIS or FLUXCOM GPP
data products in the summer months for sites included in the
present analysis (Fig. 2a). DryFlux also captured interannual
variability in GPP more accurately than MODIS or FLUXCOM
data products (Fig. 2b and Supplementary Table 1). Since our
model captured interannual variability well, when we evaluated
the differences between GPP predictions from the years following
strong El Nifio (2015) and La Nifia (2011) events, total DryFlux
GPP predictions encompassed a larger range of values than
FLUXCOM predictions (Fig. 2¢, d).

To assess the implications of our more realistic climatic control
of dryland carbon uptake beyond the Southwest, we applied
DryFlux to dryland regions globally at a 0.5° resolution (Fig. 3a,
b). The El Nifo Southern Oscillation, triggers global climate
teleconnections that result in both positive and negative depar-
tures from normal rainfall patterns’’. To assess the impacts of
these variable moisture conditions on carbon uptake variability in

dryland systems beyond the Southwest, we selected the strongest
El Nifio year (2015-2016) and strongest La Nifia year
(2010-2011) in the MODIS data record based on the Oceanic
Nifio Index®. We compared annual carbon uptake per-pixel
between 2011 and 2015 to assess the impacts of drought on
carbon uptake (Fig. 3). The 2010-2011 La Nifa, which was the
strongest in the past eight decades, led to strong carbon uptake
in Australian semi-arid systems (Fig. 3a) that explained most of
the exceptionally large global carbon sink in 20112. Carbon
uptake in the North American Southwest was spatially variable—
portions of Texas and northeastern Mexico had abnormally low
GPP and western regions (i.e., Nevada, Oregon) had anomalously
high GPP in 2011 (Fig. 3a). During the strong El Nifio year in
2015, these trends were reversed (but weaker) in Southwestern
North America (Fig. 3b), as much of the West had low GPP and
the portions of Texas and northeastern Mexico had high GPP
(based on per-pixel Z-scores). The El Nifio event in 2015-2016
led to severe drought in much of Australia?’. To test the ability of
DryFlux to capture strong interannual variability related to global
weather-producing phenomena, we calculated the per-pixel dif-
ference in GPP between 2011 and 2015 (Fig. 3¢, d). Overall, both
FLUXCOM and DryFlux showed an increase in carbon uptake
over Australia in the La Nifla year compared to the El Nifio year
(Fig. 3¢, d), but, importantly, DryFlux showed a larger (38.6%)
reduction in carbon uptake in the El Nifio year compared to the
La Nifa year, compared to only a 11.8% reduction estimated by
FLUXCOM (Fig. 3c, d). Together, these results suggest that
models not tuned to dryland dynamics could underestimate
interannual variability in dryland carbon fluxes. Supporting this
idea, we find that in the Southwest, FLUXCOM and MODIS GPP
uniformly overestimate carbon uptake in semi-arid grasslands
and shrublands, and underestimate carbon uptake in semi-arid
forests (Supplementary Fig. 4 and Supplementary Fig. 5). We
chose to compare spatial patterns in DryFlux to FLUXCOM
instead of MODIS GPP in the Southwest and Australia (Figs. 2c,
d and 3) for two reasons: first, we anticipate the two upscaled
products will have similar applications and user bases and thus
the comparison is more relevant to the research community, and
second, FLUXCOM generally outperformed MODIS GPP in
drylands (Supplementary Tables 1 and 2), so the comparison is
more informative of DryFlux performance.

Our validation of globally upscaled DryFlux using eddy cov-
ariance sites with contrasting phenology in Africa, Australia,
Europe, and South America (Supplementary Table 3) showed
comparable or better performance than MODIS and FLUXCOM
at the majority of global dryland sites (Supplementary Fig. 6 and
Supplementary Table 2). The recent FluxSat>? product was not
compared with DryFlux, but will be included in future analyses.
Like FLUXCOM, FluxSat was designed for global analyses,
included few sites from the US Southwest in model building
(four), and had poor performance at some dryland sites32. While
eddy covariance data is not widely available throughout global
drylands, our preliminary validation shows that DryFlux is likely
broadly applicable beyond the Southwest. Sites where DryFlux
performed particularly poorly were Australian sites with high
measurement variability (AU-Lox) and savanna sites with phe-
nology novel to the model (AU-Dry, AU-GWW, AU-DaS; Sup-
plementary Fig. 6 and Supplementary Table 5). Future iterations
of DryFlux should: incorporate sites with vegetation types poorly
represented in the Southwest training dataset (savanna, deciduous
broadleaf forest) in model building; pinpoint dryland regions
where additional flux data is needed; and comprehensively vali-
date DryFlux performance at global dryland sites. Furthermore,
the potential for additional ecohydrological variables to inform
GPP estimates, including soil moisture and actual evapo-
transpiration, should be explored. We anticipate the framework
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we developed will be readily extensible beyond Southwestern
North America as dryland flux measurements become more
available across the globe.

To establish that ecohydrological coupling was important for
the improvements we saw in DryFlux, we built and validated a
version of the DryFlux model without ecohydrological variables.
The ecohydrological variables had the largest impact on predic-
tions of interannual variation in fluxes driven by year-to-year
variation in weather patterns in both the Southwest and Australia
(Supplementary Figs. 7 and 8). Without ecohydrological vari-
ables, the model underestimated interannual variability in sum-
mer GPP at Southwest sites compared to the full DryFlux model
(Supplementary Fig. 7a, b). The model without ecohydrological
variables applied to the full Southwest region had muted
responses to differences in carbon uptake between a strong La
Nina (2011) and strong El Nino (2015) years (Supplementary
Fig. 7c, d). This trend was also shown in Australia dryland regions
—when ecohydrological variables were excluded from DryFlux,
the difference in GPP uptake between 2011 and 2015 decreased
(Supplementary Fig. 8). These results suggest that DryFlux’s
sensitivity to moisture conditions results in GPP estimates that
are more responsive to interannual variability in weather patterns
than existing models. Overall, water-carbon coupling appears

particularly important for capturing interannual variability in
dryland fluxes.

DryFlux more accurately represented other key features of dry-
land ecosystem dynamics including the characteristic dual peak in
SW forests driven by springtime snowmelt and summer rains
(Fig. 1f) and rapid carbon uptake in flashy response to moisture
inputs in grasslands (as reflected in the root mean squared error
(RMSE) and the root mean square of successive differences
(RMSSD), a measure of variability in a time series in Fig. 1d-f) than
the alternate models analyzed*!#2. Furthermore, we consistently
saw that months with abnormally high precipitation were often
followed by months with abnormally high GPP (Supplementary
Fig. 9). When applied to the global scale, the DryFlux model
appeared more sensitive to the impact of moisture conditions on
regional carbon cycling. Accounting for these dryland dynamics
could improve global predictions of carbon uptake in earth system
models. Our work underscores the tight ecohydrological coupling
between water and carbon dynamics in water-limited ecosystem,
and highlights the need to accurately represent these processes in
models of terrestrial carbon uptake.

Drought impacts on the carbon cycle extend beyond dryland
ecosystems?#3, Future climate change is likely to increase
drought frequency and intensity in many regions globally%4,
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Fig. 3 Gross primary productivity in global drylands and Australia. a, b Z-scores of annual DryFlux GPP in global Drylands for 2011 (a strong La Nifa
year) (a) and 2015 (a strong El Nifio year) (b). ¢, d Difference in carbon uptake over Australia (gCm~2 year—1) between 2011 and 2015 using DryFlux (c)

and FLUXCOM (d) GPP estimates (2011 minus 2015).

Temperature rises and associated increases in atmospheric vapor-
pressure deficit>40 are likely to cause decreases in carbon uptake
in ecosystems like forests that are not currently water limited4’,
potentially reducing the strength of the terrestrial carbon sink*8.
Drought duration, intensity, and frequency are expected to
increase in dryland regions, making these systems especially

vulnerable to climate change#®>0. Already, the early 21st century
has brought prolonged drought, warm temperatures, and extreme
rainfall events to drylands including the Southwest®>? and
Australia®>>. Models that account for drought impacts on the
carbon cycle are crucial for predicting and understanding the
global carbon cycle. Furthermore, accounting for drought impacts
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on carbon dynamics will become more important as temperatures
increase and precipitation patterns change.

Overall, this study highlights the crucial need to better repre-
sent coupled water and carbon dynamics in dryland ecosystem
models. Based on the comparison of our GPP product with a
global model similar to those routinely used to benchmark Earth
System models®*, we suggest that dryland-driven interannual
variability in the global carbon cycle may be underestimated by
existing models that represent mainly vegetation greenness and
therefore do not adequately account for the ecohydrological
effects of annual and sub-annual moisture dynamics on vegeta-
tion productivity. Our DryFlux model indicated greater inter-
annual variability than FLUXCOM or MODIS GPP, and was
more highly correlated to observed interannual variability in eddy
covariance data. Our product improves on comparable products
tested because it is informed by a dense network of flux sites
across varied dryland ecosystems, accounts for flashy ecosystem
dynamics, and accounts for tight ecohydrological coupling
between carbon and water cycling dynamics in drylands.

Methods

Carbon fluxes were upscaled from 24 eddy covariance sites across the North
American Southwest and Northwestern Mexico (Supplementary Table 4) using
remote sensing and gridded meteorological inputs using a machine learning
(random forest) approach®®. We used all available sites in each year, which are
detailed in Supplementary Table 5. There were two steps to the upscaling process:
first, relationships between predictor variables and monthly eddy covariance from
flux towers were derived using random forest models. Second, the random forest
models were applied to per-pixel gridded inputs to create spatially and temporally
continuous GPP estimates from 2000 to 2016. All analyses were conducted in the R
language (R version 4.0.2) and environment for statistical computing®.

Data acquisition. Relationships between predictor variables and monthly fluxes
from eddy covariance towers were quantified using random forest models using the
R ‘caret’ package®”. Data inputs included 0.05° 16-day Enhanced Vegetation Index
(EVI) and NDVI data products from MODIS (MOD13C1v006) downloaded from
the date closest to the 15th of each month for 2000-2016°8. Elevation was acquired
from the Shuttle Radar Topography Mission using the ‘getData’ function in the
‘raster’ package®. Precipitation, PET, vapor pressure, daily mean temperature, and
monthly average daily maximum and minimum temperature (Tmax, Tmin) at 0.5°
spatial resolution were downloaded from the Climatic Research Unit (CRU)%%:61,
For a given month, the previous month’s precipitation from CRU was also included
as a predictor. Day length was determined for the 15th or 16th of each month
(corresponding to CRU dates) using the ‘daylength’ function in the ‘geosphere’
package and site latitude coordinates®2. MAT and MAP were downloaded in 30 arc
seconds from WorldClim using the ‘getData’ function in the ‘raster’ package>%¢3.
All data products were aggregated to 0.5° spatial resolution using bilinear inter-
polation, and aligned to the same projection and extent using the ‘projectRaster’
function from the raster package in R.

To evaluate changing water regime effects on dryland system productivity, we
used the SPEIL This multiscalar drought index is a good predictor of change in
ecological responses to drought in drylands®49°. It accounts for the impacts of both
supply- and demand-side limitations to carbon uptake (i.e., soil moisture and
atmospheric vapor-pressure deficit) and also can be calculated to assess both intra-
and interannual water deficits®. SPEI was calculated from data using the ‘SPET’
package®” and included as a predictor from 1-month to 12-month timescales®869,
Time series of SPEI were calculated from time series of monthly precipitation and
PET values using the function ‘spei’.

Gap-filled eddy covariance data for the North American Southwest sites were
acquired from site PIs (see Supplementary Table 4 and Table 1 in Biederman et al.
2017 for site details). GPP was calculated from the Net Ecosystem Exchange values
using the relationship between nighttime Net Ecosystem Exchange and
temperature as described in Biederman et al. 201721, Global validation sites were
obtained from the FLUXNET2015 dataset’—sites were selected based on MAP,
MAT, geographic location, and data policy. Mean daily GPP values using the
nighttime partitioning method with variable USTAR threshold”! were aggregated
to monthly resolution for all selected dryland sites. The specific FLUXNET2015
column used for GPP values was ‘GPP_NT_VUT_MEAN’. A mask for global
drylands was created based on an updated global drylands map from United
Nations Environment World Monitoring Centre and are in accordance with
United Nations Convention to Combat Desertification definition of drylands”273,

Site-based random forest analysis, validation, and upscaling. The random
forest model was trained using a random subset of 80% of the sites (19 sites;

n = 1540 monthly observations), with 20% of the sites (1 = 5; 366 monthly obser-
vations) held out for model testing’#. The training method was repeated three times
with 5-fold cross-validation. The minimum RMSE was used to select the optimal
number of variables selected as candidates at each split (mtry) such that mtry = 10.
The default number of trees (Ntree = 500) was used in model training. Variable
selection was based on several factors intended to maximize both parsimony and
model precision and accuracy. To avoid bias in importance metrics when there are
highly correlated predictor variables, we assessed variable importance with conditional
permutation importance metrics with the ‘varimp (conditional = TRUE)’ function in
the ‘party’ package’>~’. Importance metrics are measured as a drop in model accuracy
when a specific variable is excluded from the model (the more model accuracy drops
by excluding a variable, the more important that variable is in the prediction). If two
predictor variables are highly correlated in nonconditional importance metrics,
removal of one variable would not result in a large decrease in model accuracy and
importance metrics for these variables could be underestimated. In contrast, condi-
tional permutation metrics considers correlation between variables when assessing and
provides more accurate importance metrics’6. Variables and variable importance for
the final random forest model are shown in Supplementary Fig. 3. Z-scores were
calculated to evaluate anomalous GPP estimates and precipitation values. Z-scores
were calculated for each year according to the following equation:

7, =" (1)

such that the mean of all months for year 7" is subtracted from mean precipitation
(Supplementary Fig. 9) or GPP estimate (Fig. 3) across all months and years
(2000-2015), then divided by the standard deviation of all precipitation or GPP
estimates included in the analysis.

For upscaling, random forest models were applied to global gridded satellite and
meteorological inputs for masked dryland areas at 0.5° scale using the ‘predict’
function in the ‘raster’ package®®. The ‘predict’ function applies a fitted model to
each grid cell over a given spatial extent, using a stack of raster layers as inputs. In
our case, the fitted model was the DryFlux random forest model trained in the
Southwest and was applied over global drylands. The model had a training
accuracy of R? = 0.815; RMSE = 0.521 with mtry = 10. The testing accuracy of the
model was R?=0.610 and RMSE = 0.876.

To evaluate DryFlux model predictions, we extracted the time series of GPP
estimates from 2000 to 2016 of the DryFlux model for each of 24 flux sites and
compared it to the eddy covariance tower GPP, MODIS GPP, and FLUXCOM GPP
estimates. Then, 8-day 500 m MODIS GPP (MOD17A2H v006) values were extracted
for all sites using Google Earth Engine and subset to dates included in the NDVI/EVI
estimates’S. Daily 0.5° resolution FLUXCOM GPP estimates using MODIS remote
sensing and CRUJRA_v1 meteorological forcing data inputs (for consistency with the
CRU datasets) were downloaded from the Data Portal of the Max Planck Institute for
Biogeochemistry317%80, Daily FLUXCOM GPP estimates were used to calculate mid-
month average values. Root mean square error (RMSE) values, correlation coefficients
(r), coefficient of determination (R2), and RMSSD were used to evaluate model
performance. RMSSD, a measure of variability in a time series*!:8!, is obtained by
taking the square root of the average squared successive differences. RMSSD values
were calculated with the ‘rmssd’ function in the ‘psych’ package®2, and r and R? values
were calculated with the ‘stats’ package®®. RMSE values were calculated with the
‘RMSE’ function in the ‘caret’ package®’,

Data availability

MODIS Vegetation Indices were downloaded from NASA’s Land Processes Distributed
Active Archive Center (LP DAAC) located at the USGS Earth Resources Observation and
Science (EROS) Center and is available at https://lpdaac.usgs.gov/products/
mod13c1v006/. Climatological data were downloaded from the Climatic Research Unit
(University of East Anglia) and Met Office at https://crudata.uea.ac.uk/cru/data/hrg/
cru_ts_4.04/ and were further used to calculate SPEI and vapor-pressure deficit variables.
MAT, and MAP data from WorldClim (https://www.worldclim.org/) were downloaded
using the ‘raster’ package in R. Elevation from the Shuttle Radar Topography Mission
(https://srtm.csi.cgiar.org/) were downloaded using the ‘raster’ package in R. The MODIS
GPP data product was downloaded from NASA’s LP DAAC at the USGS EROS Center
using Google Earth Engine and is available at https://lpdaac.usgs.gov/products/
mod17a2hv006/. Daily FLUXCOM GPP estimates were downloaded from the Data
Portal of the Max Plank Institute for Biogeochemistry and are available at http://
www.fluxcom.org/. Daily flux tower GPP for global dryland testing sites is available at
https://fluxnet.org/data/. Daily flux tower GPP for DryFlux training sites in the North
American Southwest was acquired from site PIs and this data is available at https://
github.com/marthageb/DryFlux.

Code availability
Analysis was conducted using R version 4.0.2 and all code for the analysis and
production of figures is available at https://doi.org/10.5281/zenodo.554001583
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