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Abstract
Identifying the potential distribution of soil-biodiversity with its density and richness rela-
tionships, including constituent species, is a pre-requisite for the assessment, conservation 
and protection of soil biodiversity and the soil functions it drives. Although the role of 
earthworms in improving soil quality has long been established, to quantitatively and spa-
tially assess how this soil-animal group’s distribution changes along environmental gradi-
ents and geographic space and the identification of the drivers of such change has not been 
fully investigated. This comprehensive study aimed at modelling and mapping earthworm 
spatial distribution and diversity patterns to determine their conservation needs and pro-
vide baseline reference data for Germany. The study compared multiple modelling algo-
rithms to map earthworm community parameters and 12 species-specific distribution prob-
abilities, calculate their geographic range sizes and determine responses to environmental 
predictor variables. Three general patterns of spatial distribution ranges were identified by 
the model predictions (large-range, mid-range, and restricted-range species) with the cor-
responding environmental contributions to the predictions. Modelled species responses to 
environmental predictors confirm observed environmental drivers of earthworm distribu-
tion in Germany. The range classes based both on distributional level and geographic space 
provide the necessary information for identifying conservation and decision-making pri-
orities, especially for restricted-distribution species as well as those with clearly defined 
habitat preferences.
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Introduction

A major portion of the biodiversity of terrestrial ecosystems is represented by soil-dwelling 
fauna (FAO et  al.. 2020). Furthermore, most ecosystem services provided by terrestrial 
habitats are based on soil functions (Adhikari and Hartemink 2015), whereby practically all 
soil functions derive from processes driven by soil organisms such as earthworms (Gardi 
and Jeffery 2009; Turbé et al. 2010). The enormity of soil biodiversity and its functional 
importance has led to the appreciation of the conservation needs of soil biocoenoses (Brus-
saard 1998; Lavelle et al. 2006; Bouma and Montanarella 2016; Briones 2018), which has 
been recognized by stakeholders and politics (e.g.,Turbé et al. 2010; FAO et al. 2020;  To 
this aim, the recently adopted European soil-protection strategy framework specifically 
calls for protecting and conserving soil biodiversity through explicit monitoring programs. 
Many publications have outlined approaches for monitoring soil biodiversity (e.g., Gardi 
and Jeffery 2009; Cluzeau et al. 2012; Pulleman et al. 2012; Griffiths et al. 2016; Orgiazzi 
et al. 2016; van Leeuwen et al. 2017). Some concrete national soil-biodiversity monitor-
ing programs specifically detail assessment approaches (e.g., Weeks 1998; Römbke et al. 
2000; Rutgers et  al. 2009; Cluzeau et  al. 2012), whereby these base an assessment on a 
comparison with “reference values” derived from field surveys in selected reference sites. 
However, conservation and protection of soil biotic communities require evidence-based 
baseline information—derived at broader spatial scales—on their local and regional dis-
tributions, which is necessary for formulating reference values (“standard operational 
ranges”) for soil-biodiversity monitoring and assessment (Huber et al. 2008; Cluzeau et al. 
2012; Ockleford et  al. 2017; Baritz et  al. 2021). An approach for deriving generalizable 
soil-biodiversity baselines is to upscale local observational data to broader spatial scales 
using correlative modelling methodologies.

Species biodiversity is a function of community composition (which species occur), 
species richness (how many species co-occur), both total communities as well as individual 
species’ densities, and the pattern of their occurrences in geographic space, all of which 
are vital for biodiversity assessments. Using only one or few of these metrics is not suf-
ficient for assessing biodiversity as, e.g., two communities may be identical in richness but 
differ in densities and occurring species identities (Groves 2022). Identifying the potential 
distribution of soil-biodiversity coupled with its community composition, density and rich-
ness relationships is a pre-requisite for the assessment, conservation and protection of soil 
biodiversity and the soil functions it drives.

In recent years, a powerful tool for understanding biodiversity, its distribution and 
the potential drivers of this distribution has been the development of species distribution 
models (SDMs). SDMs statistically model species or community’s correlations with envi-
ronmental parameters and use these correlations to upscale their potential occurrences 
to larger spatial scales based on the spatial distribution of the environmental parameters 
(Guisan et al. 2017). Such mapping methodologies are a core solution for decision support 
of biodiversity and ecosystem-services conservation policies throughout the EU (Maes 
et al. 2012).

Various SDM modelling methods or algorithms exist today, such as Generalised Lin-
ear Models (GLM), Classification Tree Analysis (CTA), Multivariate Adaptive Regres-
sion Spline (MARS), Maximum Entropy (MaxEnt), Random Forest (RF) and General-
ised Boosted Regression Models (GBM), among others. Each of these possess inherent 
strengths and weaknesses (Li and Wang 2013; Valavi et  al. 2021), and a few of them 
are sensitive to sampling size, which greatly affect their capacity to predict accurately 
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(Kumar and Stohlgren 2009). Models’ performance comparison is one of two meth-
ods for overcoming model-based uncertainty in SDM, the other is the use of ensem-
ble methods (Marmion et  al. 2008). Guisan et  al. (2017) identified various evaluation 
metrics that can be used to select the best performing model for SDM projections and 
predictions, which range from conventional statistics such as R2, root mean square error 
(RMSE), to threshold-independent “area under the receiver operating characteristic 
curve” (AUC​ROC) and Kappa statistics, among others. The choice of the metrics to use 
for evaluation should however be determined by the nature, type of data and the objec-
tives of the studies (Guisan et al. 2017; Zurell et al. 2020).

Related to species’ distribution ranges (and possibly used interchangeably, but differ-
ent in methodology and purpose) is a “species’ range size”. While “species distribution 
range” describes the occurrence of a taxon or its arrangement within a geographic space 
without necessarily determining the range size or extent, “species geographic range 
size” is the geographic area in which a taxon is found, mostly measured in km2. This 
latter metric has been used as an indicator for assessing the threat status of a species; 
a narrow-range species being much more vulnerable and having a higher probability of 
going extinct than a species with a wider range size (Gaston and Fuller 2009). The clas-
sification of species into threat categories has mostly been done using geographic range 
size (Sheth et al. 2020), which has been adopted as standard practice by the IUCN under 
criteria B1 and B2 both at global and regional scale (2012b, 2022). While this study did 
not intend to re-produce the red list for earthworms in Germany, the predicted species 
distribution maps and geographic range sizes can be used to classify species into distri-
butions range classes for information on conservation guidance.

Although the role of earthworms in, e.g., improving soil structure and quality has 
long been established (Blanchart et al. 1999; Blouin et al. 2013), quantitatively assess-
ing how this soil-animal group is distributed along environmental gradients and geo-
graphic space and the identification of the drivers of such change has only recently been 
investigated. Previous studies have focused either on specific taxa (i.e., Marchán et al. 
2015: the species Hormogaster elisae Alvarez, 1977, Marchán et al. 2021: the endemic 
genera Kritodrilus Bouché, 1972 and related taxa, Marchán et al. 2016: the family Hor-
mogastridae Michaelsen, 1900) or on earthworms in total (i.e., Palm et al. 2013; Rut-
gers et  al. 2016; Phillips et  al. 2019). They also investigated different spatial scales: 
local (e.g., Gabriac et  al. 2022, Marchán et  al. 2015), catchment (Palm et  al. 2013), 
regional (Marchán et al. 2016, 2021; Marchán Marchán and Domínguez 2022) or conti-
nental/global (Rutgers et al. 2016; Phillips et al. 2019). Furthermore, such studies often 
employed a single modelling framework for predicting spatial distributions (i.e., GLM: 
Rutgers et al. 2016, GLMM: Phillips et al. 2019, MaxEnt: Marchán et al. 2015, 2016, 
BRT: Palm et al. 2013; but see Marchán et al. 2016; Marchán & Domínguez 2022 for 
ensemble methods). The current study’s general goal was therefore to compare differ-
ent modelling algorithms’ abilities to spatially model and map the distribution of both 
earthworm communities and selected species at a national scale (Germany) for assess-
ment of their distributional and conservation status. It therefore sought to achieve the 
following objectives: (1) apply and compare correlative modelling techniques for map-
ping the spatial distribution and the geographic range of earthworm community param-
eters as well as selected earthworm species in Germany, (2) identify and determine the 
importance of environmental predictors based on their contribution to correlative mod-
els, and (3) evaluate whether species related to different earthworm life-form types are 
predicted to generally react differently to environmental drivers.
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Materials and methods

Study area and workflow

The spatial scope of the study encompasses the entire range of mainland Germany. In 
the models and for mapping algorithms, the latitudinal extent was set from 47.3209 to 
54.9049° N and the longitudinal extent from 6.0470 to 14.8428° E (Fig. 1). This project’s 
modelling workflow followed the Overview, Data, Model, Assessment and Prediction Pro-
tocols (“ODMAP”, Zurell et  al. 2020; Fig.  2), consisting of eight systematic steps: data 
collation of (1A) biological (earthworm) and (1B) environmental data, (2) variable selec-
tion, (3) multicollinearity tests, (4) data organization, (5) data partitioning into training and 
test data, (6) model calibration and fitting, (7) prediction (upscaling [“mapping”] model 
results) and (8) model evaluation and assessment.

Earthworm’s data collation

Raw data were downloaded on 22 February 2021 from Senckenberg’s soil-biodiversity 
data warehouse (“Edaphobase”, Burkhardt et  al. 2014) using the filters “Lumbricidae” 
& “Germany”. Additional density data (i.e., from Bavaria, Brandenburg, Saxony-Anhalt) 
were obtained and included in datasets. Data were cleaned so that only community-level 
data was used, and each location of occurrence (“site”) truly included a unique habitat and 
soil type. This resulted in a dataset consisting of 22,134 individual data records (rows) 
from 992 locations (sites of occurrence) within Germany (see Supplement 1 for the indi-
vidual data sources). All available metadata concerning soil, habitat types, climate, etc. 
were downloaded with the earthworm data, being specifically linked to the individual data 
records (i.e., earthworm data per specific site of occurrence). To address the problem of 
sampling bias, we performed spatial thinning on the earthworm (occurrence records) using 
the thin function of the R Spthin package (Boria et al. 2014; Aiello-Lammens et al. 2015). 
For community-level modelling, the data from each location was aggregated for the param-
eters “total earthworm density” (harmonized to number of individuals per square meter 
[= individuals/m2]) and “earthworm species richness” (average number of species found 
occurring in a site). For species occurrences, individual species were listed as occurring in 
a site (= “present” [= 1]), if data for that species existed for any sampling date of the site. 
It was assumed that any species not listed in the data for that site likely did not—or only 
rarely—occurred in the site (at least at the time of the sampling event(s)) and was listed as 
not occurring in the site (= “pseudo-absences [= 0]) While we modeled density and rich-
ness using 45 valid species, we selected only 12 species (Table 1) prepared into presence 
(p = 1) and “pseudo-absences (a = 0)) for distribution modelling.

Environmental data collation

We pre-selected 15 external predictor variables known to have physiological and ecologi-
cal importance in the distribution of earthworm species (Rutgers et al. 2016; Phillips et al. 
2019; Edwards and Arancon 2022). As many Edaphobase records did not contain all of 
these variables, external data was used to augment data gaps. Data on climate variables 
were downloaded from Climatologies at High resolution for the Earth Land Surface Areas 
(CHELSA, Karger et  al. 2017, https://​chelsa-​clima​te.​org/​biocl​im/): mean annual temper-
ature (Bio1), total annual precipitation (Bio12), growing degree days with temperatures 

https://chelsa-climate.org/bioclim/
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Fig. 1   Map of the study area (Germany) showing earthworm species occurrence data (dots) used for cali-
brating the distribution models. Occurrence-data source: Edaphobase (https://​portal.​edaph​obase.​org)

https://portal.edaphobase.org
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above 10 °C (NGD10), and growing degree days with temperatures above 0 °C (GDDO). 
This climate data represented average values between 1981 and 2010 at 30 arc-second res-
olution, which corresponds to the main time frame of the biological data. External data on 
soil variables (texture [sand, silt, and clay content], soil depth, bulk density, air capacity 
[= porosity] and organic–matter content) were obtained from German Federal Institute of 
Geoscience and Natural Resources (BGR) at a 250 m resolution. Soil moisture (average % 
soil water content at 2.5 cm soil depth) was obtained from the European Space Agency’s 

Fig. 2   Graphical model workflow according to ODMAP protocols

Table 1   Earthworm species selected for modelling species-specific occurrence probabilities

Species Number of sites 
of occurrence

Ecological group Selection criterion

Aporrectodea caliginosa (Savigny, 1826) 719 Endogeic Common
Aporrectodea rosea (Savigny, 1826) 603 Endogeic Common
Lumbricus terrestris Linnaeus, 1758 546 Anecic Common
Lumbricus rubellus Hoffmeister, 1843 595 Epigeic Common
Allolobophora chlorotica (Savigny, 1826) 304 Endogeic Common
Lumbricus castaneus (Savigny, 1826) 319 Epigeic Common
Aporrectodea longa (Ude, 1885) 143 Anecic Limited range (?)
Dendrobaena octaedra (Savigny, 1826) 309 Epigeic Unique habitat
Dendrobaena attemsi (Michaelsen, 1903) 29 Epigeic Limited range (?)
Bimastos eiseni (Levinsen, 1884) 43 Epigeic Limited range (?)
Aporrectodea limicola (Michaelsen, 1890) 67 Endogeic Unique habitat
Lumbricus badensis Michaelsen, 1907 2 Anecic Endemic
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(ESA) Climate Change Initiative (CCI) Soil Moisture product (https://​www.​esa-​soilm​
oistu​re-​cci.​org/​data; Dorigo et al. 2017; Gruber et al. 2019). Topographic data (elevation 
at m.a.s.l.) was derived from USGS-NASA (https://​earth​explo​rer.​usgs.​gov/). Land-use/
habitat-type data was obtained from the Ecosystem Types of Europe (https://​www.​eea.​
europa.​eu/​data-​and-​maps/​data/​ecosy​stem-​types-​of-​europe-1) based on the EUNIS (Euro-
pean Nature Information System) habitat classification level-1 details, version 3.1, 2019 at 
100 m resolution. The habitat raster data was grouped into 11 habitat-type classes (marine 
influenced, coastal, inland waters, mires and bogs, grasslands, heathland, woodland and 
forest, sparse vegetation, arable land, urban and artificial habitats, and habitat complexes). 
We initially referenced all pre-selected variables to the World Geographic coordinate Sys-
tem (WGS84), cropped and masked them to the German shapefile and resampled or disag-
gregated to a common resolution of 250 m to match the resolution of the earthworm data.

SDM modelling workflow

Model predictor variable selection

All modelling procedures were performed in the R programming language version 0.1.19, 
2021 (R Core Team 2021). As issues of predictor autocorrelation and multicollinearity 
affect model performance and accuracy (Guisan and Zimmermann 2000; Mod et al. 2016; 
Salako et  al. 2021), during model calibration significant and independent environmental 
predictor variables were selected. For this, we first used principal component analysis 
(PCA) and Pearson correlation to identify autocorrelation among predictors. The corre-
lation threshold was set at R2 ≥ 0.7 (Johnson et al. 2002; Bobrowski et al. 2021). Subse-
quently, a variance inflation factor (VIF; Vifstep) was used to remove any further multi-
collinearity from the predictor variables. These procedures, including the use of Akaike 
information criterion (AIC) during model building, resulted in a final set of 11 environ-
mental predictor variables: soil depth, soil pH, clay & silt content, soil moisture, soil bulk 
density, soil porosity (= air capacity), average annual temperature and precipitation, and 
habitat type.

Model calibration and fitting

We tested four different model algorithms to model earthworm distribution predictions 
based on model classification into traditional regression and machine learning algorithms 
as well as their broad usage in modern studies (Li and Wang 2013; Valavi et  al. 2021): 
Generalized Linear regression Models (GLMs), Generalized Additive Models (GAMs), 
Generalized Boosting Models (GBM) and Random Forest models (RF). These model algo-
rithms have been described in detail in several publications (e.g., Guisian and Zimmerm-
nan 2000; Li and Wang 2013; Guisan et al. 2017; supplementary Table 1). Model fitting 
for the selected algorithms (GLM, GAM, GBM, RF) were performed with the eleven envi-
ronmental predictor variables and response variables being species observation presence/
absence data (P/A) to predict species-specific distribution probabilities, and community 
total density (ind./m2) and richness (number of co-occurring species) data to predict these 
community-level metrics. We ultimately used macro-ecological models (MEM) to directly 
predict and map earthworm species richness because of its relative advantages over stack 
species distribution models (SSDM) (Biber et al. 2020); since data for rare species were 
very patchy resulting in underprediction of this metric in SSDMs.

https://www.esa-soilmoisture-cci.org/data
https://www.esa-soilmoisture-cci.org/data
https://earthexplorer.usgs.gov/
https://www.eea.europa.eu/data-and-maps/data/ecosystem-types-of-europe-1
https://www.eea.europa.eu/data-and-maps/data/ecosystem-types-of-europe-1
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GLM and GAM models were formulated by calling the following functions, with 
added syntax (“poly”) for polynomial regression in GLMs and (“s”) for smoothing in 
GAMs.

whereby a = the response variable, x = environmental/predictor variables, DF = training/test 
data (data frame combining both the response and predictor variables). We selected the 
best models in a backward stepwise regression based on their Akaike Information Criterion 
(AIC). The models with the lowest AIC were selected (Whittingham et al. 2006). The final 
models included the predictor variables listed above.

Model fitting for GBM was performed in both the DISMO (Thuiller et al. 2021) and 
BIOMOD 2 packages (Hijmans et al. 2020) to maximally utilize all features associated 
with the two packages, using the same data as for GLM. We set the learning rate (lr) at 
0.001 and a bag.fraction of 0.5 with a maximum cross validation of 10 (cv.folds = 10). 
Final selection was based on the model with lowest predictive deviance. The following 
function for GBM was used:

whereby DF = the training/test data (data frame combining both the response and predictor 
variables), gbm.x = the predictor columns and gbm.y = the response column.

The random forest (RF) model was formulated with the following function:

whereby x = the n data frame columns for predictors, y = the n data frame column for the 
response variable and ntree = the number of trees.

To determine selected earthworm distributional range size, species range size esti-
mates were implemented in R (Rangemap; Cobos et  al. 2021), using the earthworm 
occurrence data to calculate species extent of occurrence (EOO) and area of occupancy 
(AOO) using minimum convex hull polygon (Gaston and Fuller 2009; IUCN 2012a, b) 
at a national scale (Table 4). We therefore used the combination of predicted distribution 
maps and geographic range sizes to classify species into spatial distributions ranges: (1) 
large-range distribution are species with widespread distribution and AOO > 2000 km2 
(2) mid-range are species with AOO > 1000 km2 but less than 2000 km2, (3) restricted 
or small range are species with AOO < 500 km2 and endemic and unique habitat species 
are those with AOO < 200 km2.

All model predictions (as spatial raster files) were imported to a GIS environment for 
visualization. To later more precisely project modelling results onto the spatial maps, 

Y < − glm
(

a ∼ x0 + x1 + x2 + x3 + x4 ……… xn, data = DF
)

(linear regression),

Family =�� gaussian�� (for p∕a) and ��poisson�� (for density and richness)

Y1 < −glm
(

a ∼ poly
(

x0,2
)

+ poly
(

x1,2
)

+ poly
(

x2,2
)

+ poly
(

x3,2
)

poly
(

x4,2
)

……… poly
(

xn,2
)

, data = DF
)

(polynomial regression)

Y2 < − gam(a ∼ s(x) + s
(

x1
)

+ s(x2) + s(x3) +……… s(xn), data = DF)

Y < −gbm.step (data = DF, gbm.x =, gbm.y =, family =�� gaussian�� or ��

Poisson��, tree.complexity = 2, learning.rate = 0.001,

bag.fraction = 0.5, cv.folds = 10)

Y < − random Forest(x = n[, 5 ∶ 15], y = n[, 3], n tree = 1000, node size = 10, importance = T)
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we transformed the result raster files to the Europe-focused projection system “ETRS89 
LAEA” (EPSG code: 3035) for enhanced map visualization. Furthermore, as a first 
approximation of earthworm potential diversity, we produced a GIS “overlay” of the 
earthworm community total-density and species-richness modelling results.

Model assessment/evaluation

To assess model performance, we used a split-sample cross validation (CV) method by 
splitting the data into training and test datasets at a 70:30 ratio (Phillips et  al. 2008; 
Hijmans and Elith 2019; Guisan et  al. 2017). The train datasets were used to fit the 
models, while the test datasets were used to evaluate model predictive performance. 
For the quantitative response variables of community species richness and total den-
sity, the coefficient of determination of a regression (R2) between the observations (field 
data) and predictions, as well as the concordance index (C-index) were used. We evalu-
ated the predictive ability of the species-specific distribution-probability models using 
the threshold independent statistic of “Area Under the receiver operating characteris-
tic Curve” (AUC​ROC) (Jiménez-Valverde 2011) and Cohen’s Kappa coefficient statistic. 
AUC​ROC ranges from 0 to 1 with an AUC of 0.5 or lower described as not better than 
a random prediction, 0.7 to 0.8 considered acceptable, 0.8 to 0.9 considered excellent, 
and more than 0.9 considered outstanding (Manel et al. 2001; Salako et al. 2015; Guisan 
et al. 2017). Kappa scores range from − 1 to 1, with 0 (no agreement; random) and 1 
(perfect agreement), and the rare occasions of negative values signifying less agreement 
than expected by chance. We obtained the relative contribution of environmental vari-
ables to model predictions and checked model ecological plausibility by extracting their 
response curve “partial plots”.

To test models’ reliability performances, we applied Friedman’s one way analysis of 
variance by rank on the results of all the model performances by each evaluation metrics, 
implemented in the base R function rstatix (Alboukadel 2021).

Results

Model performance and final model selection

When calibrating the GLM models, a polynomial effect was very marginal when assessed 
by AIC. Therefore, to maintain model comparability, we only retained the linear GLM 
model. We also subsequently dropped the GAMs, as there was no significant performance 
difference compared to GLMs (data not shown). The Friedman test resulted in P < 0.00112, 
indicating a significant difference in model performance. The evaluation of the tested mod-
els’ prediction performance on earthworm community species richness and total density 
showed that GLM performance exhibited very low R2 and C-Index values (Table 2), indi-
cating poor prediction of both metrics. RF had the highest R2 for total density and species 
richness; while the R2 values for GBM were much lower (Table 2). The C-Index scores 
were also higher for RF than GBM for both total density and species richness.

For the selected species’ occurrence probabilities, the AUC​ROC and Kappa scores 
of the three remaining algorithms showed that mean scores ranged from 0.601–0.982 
to 0.096–0.982, respectively (Table 3). RF resulted in the highest mean scores with less 
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variation relative to the other models. GLM resulted in the lowest AUC values, with an 
average of 0.683 (Table  3). We therefore chose RF for the subsequent modelling and 
mapping.

Predicted spatial distribution of earthworm community total density and species 
richness

The predicted earthworm community total density ranged from 10 to maximally 600 ind./
m2, with an average of 350 ind./m2 per site (Fig.  3, left). Species richness predictions 
ranged from 1 to 12 species, with an average of 4–5 species per site (Fig. 3, right). Higher 
total community densities (> 400 ind./m2) were predicted especially in grasslands and ara-
ble land in north-eastern Germany (Fig. 3, left). However, in these regions, species rich-
ness was predicted to be relatively poor with an average of 2 species per site (Fig. 3, right). 
A comparison with predicted species distributions (Fig. 5) revealed that primarily epigeic 
species such as D. ocataedra (but also L. rubellus and the endogeic A. caliginosa) were 
responsible for these predicted high total densities. The GIS overlay of densities and rich-
ness produced approximate earthworm diversity (Fig. 4).

Predicted geographic distribution and range size of selected earthworm species

The modelled distribution predictions for individual species were based on probability of 
occurrences, with the scale ranging from (0) no occurrence probability to (1) maximum 
occurrence probability. We measured the geographic range size in km2 using extent of 
occurrence (EOO) and area of occupancy (AOO) of the probability predictions. Based on 
AOO assessment and the distribution-model results, three general patterns of spatial dis-
tribution ranges were identified (see Table 4 for geographical range sizes used as grouping 
criteria): (1) species with large distribution ranges (A. caliginosa, A. rosea, L. rubellus and 
L. terrestris), (2) species with mid-range distributions (A.chlorotica, L castaneus, D. octae-
dra and A. longa), (3) species with restricted or small distributional ranges (D. attemsi, B. 
eiseni and A. limicola), including endemic species (L. badensis) or those limited to unique 
habitats (Fig. 5).

Table 2   Prediction performance 
(goodness-of-fit) metrics for the 
different tested model algorithms 
for the two community-level 
response variables

Model R2 C-index

Density
 GLM 0.089 0.603
 GBM 0.155 0.657
 RF 0.840 0.861

Richness
 GLM 0.029 0.583
 GBM 0.115 0.658
 RF 0.574 0.819
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Environmental variables’ relative contribution to model predictions 
and community/species responses to predictor variables

Community‑level analyses

Contributions of  environmental predictor variables  The environmental variables con-
tributing most to predicted earthworm total density were soil moisture, habitat type, and 
average annual precipitation, which together contributed to almost 50% of the model results 
(Fig. 6). The remaining predictors for total density contributed fairly equally (5 to 10% each) 
to the model results, with the exceptions of average annual temperature and soil pH, which 
interestingly only accounted for less than 5%. The environmental contributions to predicted 
species richness were dominated by clay content (as a proxy for soil texture) and habitat 
type, which contributed 17 and 19% respectively (Fig. 6). Climate variables (average annual 
precipitation and temperature) further contributed more than 10% to the species-richness 
predictions. As opposed to the total density predictions, pH also influenced the species-rich-
ness predictions by almost 10%, while the remaining variables almost equally contributed 
between 4 and 8%. Soil depth played the most minor role in the species-richness predictions.

Community responses to environmental predictors  Regarding climate, density predic-
tions increased below 500 mm/a total annual precipitation, but decreased above this thresh-
old (Supplementary Fig. 1). Average annual temperature did not affect density predictions 
below 10 °C, but increases were predicted above 10 °C. Interestingly, these climate param-
eters had somewhat opposing effect on species-richness predictions, which increased above 
500 mm/a precipitation and decreased between 6 and 10 °C average annual temperature.

Fig. 3   Earthworm community total density (left) and species richness (right) predicted by the Random For-
est model
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Concerning soil parameters, increasing soil moisture (as of ca. 7%) led to lower total 
density predictions (Supplementary Fig. 1), but did not strongly influence species-richness 
projections until 20% water content, at which level species richness increased. Soil acidity 
exhibited a similar threshold for both total density and species-richness projections, dra-
matically reducing at about pH 4, only to increase again above pH 5. The predictions of 
species richness, on the other hand, remained very low below pH 4, and strongly increased 
above this value. Although soil organic matter contributed only slightly to the model 
results, density predictions increased above 6% SOM content, while showing little influ-
ence on species-richness predictions. An influence of soil texture was best represented by 
clay content, where predictions of both total density and species richness increased above 
20–30% clay. Silt content had apparently little influence on species richness, but density 
predictions strongly decreased above 30%. Besides soil texture, soil structure also influ-
enced the earthworm community predictions. Density projections strongly increased at a 

Fig. 4   Predicted habitat suitability for earthworm diversity (overlay of Random-Forest predictions of earth-
worm total densities and species richness)
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total porosity above 15%, but species-richness projections decreased continuously with 
increasing porosity. Soil bulk density apparently negatively affects earthworm commu-
nities, as both total-density and species-richness predictions abruptly and dramatically 
decreased above bulk densities of 1.5 g/cm3.

Species‑specific analyses

Environmental variables contribution  Regarding species’ occurrence-probability models, 
four variables were predicted to be the principal drivers of earthworm species’ distributions 
in Germany: precipitation and associated soil moisture, habitat type, and soil pH. For some 
species, average annual temperature and soil organic matter were also apparently important 
(Table 5).

Total annual precipitation and the related soil moisture often accounted for up to 20% or 
more of the predictions in many species and were found to be essential predictor variables 
(together contributing more than 33%) for the modelled distribution of A. limicola, A. chlo-
rotica, and L. badensis, but also for L. terrestris, L. rubellus and L. castaneus (ca. 30%) as 
well as somewhat (> 25%) for A. rosea, A. caliginosa and D. attemsi (Table 5). Therefore, 
these hydrological parameters were highly important predictors of the occurrence of ¾ of 
the tested species. The occurrences of D. attemsi, B. eiseni, L. rubellus and A. chlorot-
ica were predicted to also be highly dependent on climate (average annual precipitation 
and temperature), exhibiting large contributions of these variables (often > 21%) to their 

Table 4   Classification of species’ Geographic range size based on IUCN category B criteria (“1” and “2”; 
see “Methods” for explanations)

EOO extent of occurrence, AOO area of occupancy, NA occurrence data insufficient for calculating range 
sizes
++The large distribution range are species with widespread distribution and AOO > 2000 km2 (2) the mid-
range are species with AOO > 1000 km2 but less than 2000 km2, (3) the restricted or small range are species 
with AOO < 500 km2 and the endemic and unique habitat species are those with AOO < 200 km2

*Thresholds for EOO are 100  km2, 5000  km2 and 20,000  km2 for Critically Endangered (CR), Endan-
gered (EN) and Vulnerable (VU) species, while the equivalent values for AOO are 10  km2, 500  km2 and 
2000 km2, respectively

Species EOO (km2)* AOO (km2)* ++Geographic range size class

A. caliginosa 364,624.4 2420 Large range
A. rosea 365,299.4 2092 Large range
L. terrestris 365,187.7 2084 Large range
L. rubellus 375,796.7 2008 Large range
A. chlorotica 350,969.0 2004 Mid-range
L. castaneus 355,539.2 1040 Mid-range
D. octaedra 365,051.9 1020 Mid-range
A. longa 354,399.3 572 Mid-range
D. attemsi 201,500.8 108 Restricted range
B. eiseni 192,725.0 100 Restricted range
A. limicola 262,682.8 196 Restricted range
L. badensis NA NA Restricted range/endemic 

(Lehmitz et al. 2016)
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occurrence predictions. Also, the occurrence probability of D. octaedra was predicted to 
be highly related (16%) to annual average temperature.

Habitat type was the next environmental predictor identified as contributing impor-
tantly to species’ occurrence probabilities. With an average contribution of 13% and 

Fig. 5   Distribution probabilities of selected species predicted by the Random-Forest models, grouped into 
different predicted range sizes (top row: large-range species; middle row: mid-range species, bottom row: 
restricted-range and endemic species)
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contributions to individual species ranging from 9.2 to 29%, this predictor influenced 
all species occurrence probabilities. Only for B. eiseni was habitat type less important 
(7%).

Concerning soil parameters, the contribution of soil pH to the occurrence predictions 
was moderate across all species, on average ranging from 6 to 22%, with an average of 
ca. 10%. A. longa and A. caliginosa were predicted to be highly dependent on soil pH, 
presenting a high contribution of > 20%. The occurrence of A. limicola and L. baden-
sis appeared to be less dependent on soil pH, with contributions of only 2.6 and 0%, 
respectively. The contribution of soil organic matter was predicted to be higher mostly 
for epigeic species (ca. 7–13%; except for D. octaedra [4.4%]) and endogeic species 
such as A. limicola and A. caliginosa, compared to much lower prediction contributions 
of less than 6% for the majority of endogeic and anecic species. Soil texture (clay and 
silt content) had comparatively less influence on species’ occurrences (< 10%), except 
for A. longa and D. octaedra, where silt contributed 15% to the occurrence predictions; 
the probabilities of L. terrestris (silt = 11%) and B. eiseni (clay = 10%) were moderately 
influenced by soil texture. Soil structure (porosity and bulk density) in general only 
moderately influenced model results (ca. 7% on average), although occurrence prob-
abilities of species such as L. rubellus and L. badensis were highly influenced by bulk 
density and L. castaneus and A. rosea by porosity. Soil depth was the variable contribut-
ing least to the model results, influencing the occurrence probabilities of most species 
by only 2–5%.

Species’ responses to environmental predictor variables  While the relative contributions 
of predictors to model results allow identification of potentially important drivers of earth-
worm distribution, response curves to quantitative predictors can give insight to how these 

Fig. 6   Contribution (in %) of the environmental predictor variables to the predictions of earthworm com-
munity total density and species richness. Prec., Temp. average annual precipitation and temperature, 
respectively, habitat habitat type (see “Methods”), SOM Soil Organic Matter; all (soil) contents in %
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drivers affect species’ potential distribution. Climate parameters (average annual tempera-
ture and precipitation) and the related soil moisture often presented consistent patterns of 
influence on occurrence predictions, which differed between epigeic and endogeic species 
(Fig. 6). The occurrence probabilities of epigeic species generally decreased with increas-
ing annual mean temperature (usually above 6–8 °C) and inversely with decreasing mean 
annual precipitation and soil moistures. The precipitation thresholds at which occurrence 
probabilities increased were species specific, where the probabilities of, e.g., D. attemsi, 
L. castaneus, and L. rubellus increased above precipitations of 500  mm/and those of B. 
eiseni and D. octaedra above ca. 1000 mm/a (Supplementary Fig. 2a). Increased occurrence 
probabilities of these species were predicted at different levels of soil moisture except for 
B. eiseni, whose occurrence predictions decreased above soil-H2O contents of ca. 6%. In 
contrast, the occurrence predictions of endogeic species increased with higher annual mean 
temperature and inversely often decreased with lower annual mean precipitation and soil 
moisture (Supplementary Fig. 2b). Again, the thresholds at which occurrence predictions 
changed were species specific. An exception represented A. limicola, whose occurrence 
probabilities increased with lower annual mean temperature (below ca. 7 °C) and higher 
annual precipitation (ca. 800 mm/a) and average soil moisture (> ca. 18% H2O). Anecic 
species did not show a common pattern and were species specific (Supplementary Fig. 2b).

Species’ prediction responses to soil pH were also different between epigeic and 
endogeic/anecic species. (Supplementary Fig. 2a, b). The occurrence probabilities of epi-
geic species were generally larger at lower pH values, while that of endogeic and anecic 
species were larger at higher pH values. Exceptional was the epigeic L. castaneus, whose 
prediction response increased at higher pH values. Interestingly, the threshold at which 
occurrence probabilities either increased or decreased were generally around pH 4.0, with 
an optimum (for species with higher probabilities at higher pH values) of around pH 6–7. 
Exceptions were found for, i.e., A. chlorotica, L. rubellus and L. terrestris, whose thresh-
olds were around pH 5, or A. longa with increasing occurrence probabilities above soil-pH 
values of 6.

No consistent response to soil organic matter (SOM) was observed among life-form 
groups, and the prediction responses were instead species specific (Supplementary Fig. 2a, 
b). The epigeic D. octaedra and D. attemsi, the endogeic A. chlorotica and A. rosea, as 
well as the anecic A. longa and L. terrestris all showed reduced occurrence probabilities 
with increasing SOM content. These species optima where generally predicted to be < 6% 
SOM. Contrarily, the epigeic L. castaneus and L. rubellus, the endogeic A. caliginosa and 
A. limicola showed positive responses to increasing SOM, with maximum probabilities 
shown to be around 8–12% SOM content.

Soil texture parameters (clay and silt content) only contributed substantially to the 
occurrence predictions of a few species (Supplementary Fig. 2a, b), and were not related 
to life-form type. For instance, the predicted occurrence probabilities were larger at both 
higher clay and silt contents for B. eiseni (epigeic), A. rosea, A. caliginosa (both endogeic) 
and L. terrestris (anecic)—as did those of A. limicola at higher clay content—suggesting a 
preference for finer textured soils by these species. Contrarily, the responses of L. rubellus 
(epigeic) and A. longa (anecic) generally decreased with higher clay and silt content—and 
that of D. attemsi (epigeic) and A. chlorotica decreased with higher clay content—suggest-
ing preferences for coarser soils. The other species only showed irregular responses or very 
low prediction contributions to soil texture.

Concerning soil structure, differences between life-form types were observed (Sup-
plementary Fig. 2a, b). Most epigeic species exhibited higher occurrence probabilities at 
higher levels of porosity and lower bulk densities, suggesting a preference for looser soil. 
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Contrarily, the predicted responses of some endogeic species (i.e., A. caliginosa and A. 
rosea) and the anecic L. terrestris where larger at lower levels of porosity and higher bulk 
densities (as was the response of A. limicola at larger bulk densities), suggesting a prefer-
ence for denser soils. The predicted response of the other endogeic and anecic species was 
irregular and/or with very low contributions to predicted occurrence probability.

As a categorical explanatory variable, species response curves could not be calculated 
for habitat. Nonetheless, the predicted species’ occurrence probabilities to the levels (indi-
vidual habitat types) of this variable can indicate species responses to habitat type. These 
results showed that the largest occurrence probabilities were found primarily for forests, 
grassland, and arable land, while marine-influenced (i.e., islands) and coastal habitats as 
well as bogs & fens and scrubland were the least preferred (Table 6). Most species were 
predicted to occur in all habitats with at least low occurrence probabilities (Table 6), except 
for L. badensis, which was predicted to occur primarily in forests and grassland. A few 
species were predicted to occur in many habitat types with high probabilities, indicating a 
generalist nature, i.e., A. caliginosa, A. longa, A. rosea, L. rubellus as well as L. castaneus 
(in more developed habitat types).

The occurrence predictions also identified some species as potentially having unique or 
main habitat preferences, such as D. octaedra and B. eiseni in forests, L. terrestris in grass-
land and forests, or A. chlorotica and D. attemsi in agricultural habitats (arable land and 
grassland). A. limicola was predicted to have high occurrence probabilities in wetland habi-
tats such as floodplains and bogs & fens. Interesting were the high occurrence probabilities 
predicted for a few species in urban gardens and parks as well as post-mining areas. Habi-
tat types were generally not predicted to harbor specific life-form types, except for bogs & 
fens (where mostly endogeic and epigeic species had the largest occurrence probabilities) 
or grasslands (with endogeic and anecic species predicted to have the highest occurrence 
probabilities; Table 6).

Discussion

This study followed standard ODMAP protocols for implementing species distribution 
models (SDMs) (Zurell et al. 2020), using multiple model algorithms to compare model 
performance and select the best performing model for projecting earthworm spatial distri-
bution throughout Germany. SDM objectives, focus taxa and spatial scales of a study are 
major components in ODMAP protocols, as these determine the methods used in SDMs. 
Furthermore, we used several methods (expert judgement, statistical techniques, ecolog-
ical-relevance analysis) to select environmental predictor variables, thus enabling us to 
cover a large spectrum of relevant environmental variables for robust modelling of earth-
worm species distribution.

Machine learning algorithms such as Random Forests (RF), Generalised Boosted 
regression Models (GBM) or MaxEnt have been suggested to perform better than tradi-
tional regression models such as Generalized Linear regression Models (GLM) or Gen-
eralized Additive regression Models (GAM) (Elith et al. 2006; Li and Wang 2013; Valavi 
et  al. 2022). Although RF has hitherto only rarely been used and its potential underuti-
lized in SDMs, its high prediction performance has recently attracted attention in applied 
ecological studies (e.g., Mi et al. 2017). RF and GBM have been described as ensemble 
classifiers, which consist of and use several alternative trees in decision making while 
building model predictions (Li and Wang 2013; Guisan et al. 2017). Previous studies on 
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earthworm distribution modelling had often used single algorithms such as GLM (Rut-
gers et al. 2016), BRT = GBM (Palm et al. 2013), or MaxEnt (Marchán et al. 2015, 2016), 
based on the specific goals of these studies. Given the potential of machine learning mod-
els with high predictive performance, comparative assessment of different modelling 
algorithms could aid in identifying best fitting models for upscaling observed distribu-
tional data to the national scale. Although exceeding the performance of GLM and GAM 
in this study, GBM only predicted within the 3rd quantile range of the total-density and 
species-richness data. The comparison of the goodness-of-fit statistics (R2, CI, AUC, and 
Kappa), the observed:predicted data fits (data not shown) as well as the resultant maps of 
predicted density and richness by all models illustrated the good performance of RF. For 
instance, this algorithm was able to predict beyond the 3rd quartile range of density field 
data, including maximum densities over 600 ind/m2. Other studies corroborate our finding 
of RF algorithms having the best predictive performance (e.g., Marmion et al. 2008; Mi 
et al. 2017; Valavi et al. 2022). We did, however, observe goodness-of-fit improvements for 
density predictions in RF after including additional data from Bavaria, confirming reports 
that RF can be data sensitive (Valavi et al. 2021; Yiu 2021). The resulting partial response 
curves explaining the relationships between communities (or species) and environment fur-
ther exemplify how the RF models produce ecologically informative results (Cutler et al. 
2007; Mi et al. 2017). A promising direction for future studies would be the use of ensem-
ble models incorporating multiple algorithms (as in Marchán et  al. 2021; Marchán and 
Domínguez 2022).

The high goodness-of-fit results for the RF models notwithstanding, any predictive 
model is only as good as the underlying data used for calibration. With over 20,000 data 
records from close to 1000 sites of occurrence, the biological background data can be con-
sidered large and highly sufficient. As Marchán et al. (2016) noted that prediction perfor-
mance can be influenced by the amount of data used for training models, this large data 
set likely contributed to the high observed goodness-of-fit. Although the earthworm data 
records also included data on the environmental predictors in over 40% of the cases, pro-
viding high thematic association, this is patchy and needed to be augmented by external 
data. This is critical for soil parameters, for which it is often difficult to obtain compre-
hensive, nationwide data that is not based on broad interpolations (inappropriate due to 
the high small-scale heterogeneity of soil). However, not all relevant parameters could be 
included. For instance, Creamer et al. (2019, in Baritz et al. 2021) regarded indicators of 
soil organic-matter quality (i.e., C:N, N:P relationships) to also be highly important for 
soil organisms, which was not available for Germany. We are also aware of the poten-
tial difficulties of using external habitat data since a temporal disconnect between earth-
worm observation and habitat-type overviews may contain land-use changes. Fortunately, 
habitat type was the most common environmental metadata included with the earthworm 
data, ensuring a broader 1:1 association for model calibration. Finally, only abiotic vari-
ables were considered as predictor variables; any interactions with other organisms (i.e., 
between earthworm species, other soil fauna or microorganisms) were not considered (cf. 
Palm et al. 2013), since large-scale data for other organisms is also not available. Despite 
not being able to consider every potential driver of earthworm distribution, the models did 
include a high number of the most important environmental parameters known to effect 
earthworm fitness (e.g., Lee 1985; Edwards and Arancom 2022).

Although the model predictions have not yet been validated in the field, expert colla-
tions of earthworm species’ autecology confirm a majority of the predictions. Notable are 
the predicted species’ responses to soil pH, which identified many acidophobous and some 
acidophilus or -tolerant species, with a threshold between pH 4 and 5. Graefe and Beylich 
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(2003) also reported a strong species-specific differentiation, with a common threshold of 
pH 4.2, except for i.e., the acidophobous A. longa with a threshold of pH 5, as also pre-
dicted by our models. Our predictions of species’ responses to soil acidity are also widely 
confirmed by, e.g., Sims and Gerard (1999), Jänsch et al. (2013), Krück (2018), and Sher-
lock (2018). These authors as well as Römbke et al. (2018) and Lehmitz et al. (2016) also 
described species-specific preferences for soil organic-matter (SOM) content, which were 
almost completely confirmed by the model predictions. Some of these authors also con-
sidered preferences for clay content, which were generally but not always confirmed by 
the current model predictions. For instance, Jänsch et al. (2013) reported on D. octaedra’s 
preference for soils with low clay content and A. chlorotica’s slight preference for clay 
soils, both of which were contradicted by our results. Also, our predicted positive response 
of L. terrestris to soils with lower clay and silt content is contrary to the assessment of 
Sims and Gerard (1999) and Sherlock (2018) that this species prefers clay-rich soils (these 
authors, however, regard UK populations).

Our study supported earlier work on the effects of precipitation and soil moisture, where 
these variables accounted for population increases and the distribution of adult earthworms 
(Lavelle 1978; Lavelle and Spain 2005; Kalu et al. 2015; Rajwar et al. 2022). Philips et al. 
(2019) via simpler statistical methods identified climate (average annual precipitation and 
temperature) as the almost exclusive driver of earthworm communities (total density, spe-
cies richness) at a global scale. While our study confirmed the combined role of tempera-
ture, precipitation and soil moisture, it also identified, i.e., habitat type, soil pH and soil 
organic matter as important drivers. Since at global scales climate also drives, e.g., natural 
vegetation and partly also soil genesis, it is plausible that statistical methods will iden-
tify such broader-scale predictors as drivers of distribution predictions at very large spatial 
scales over other environmental parameters which exhibit higher small-scale variability. 
Marchán et al. (2015, 2016), Rutgers et al. (2016) and Gabriac et al. (2022) noted the over-
lap and correlation between large-scale variables and soil (micro-)variables. Depending on 
the scale of previous spatial studies, different predictors have been found to be significant: 
i.e., climate at global scales (Philips et al. 2019); climate, vegetation/land-use and topology 
at continental to sub-continental scales (Rutgers et al. 2016; Marchán et al. 2016; Marchán 
and Domínguez 2022); while soil parameters were important predictors at smaller spatial 
scales (Marchán et  al. 2015; Marchán and Domínguez 2022; Gabriac et  al. 2022). Our 
study at a regional scale also demonstrated the importance of habitat type (land use) and 
soil parameters in addition to climate variables as drivers of earthworm distribution. There-
fore, the relevant drivers of earthworm biodiversity are apparently scale dependent; climate 
parameters being important at global and continental scales, while vegetation/habitat type 
and soil factors become more important at smaller spatial scales. At local scales, soil fac-
tors may increase in importance, with anthropogenic land-use measures importantly influ-
encing earthworm biodiversity at the smallest scales (Palm et al. 2013).

This study predicted occurrence probabilities beyond the traditional forest, grassland 
and arable land by encompassing all terrestrial EUNIS level-1 habitat types. The predic-
tions highly corresponded to the suggested range-size classifications. For instance, most of 
the “large-range” species were predicted both to be broadly distributed throughout many 
regions in Germany and to occur equally in many diverse habitat types, often with proba-
bilities > 50–60%, thus indicating their ecologically generalist nature. The Red List of Ger-
many lists these species as being “very common” (Lehmitz et al. 2016), and they have been 
reported to occur in many different habitat types (e.g., Sims and Gerard 1999; Jänsch et al. 
2013; Römbke et al. 2018; Sherlock 2018), confirming our results. Although L. terrestris 
is generally viewed as being eurytopic, it has sometimes been noted as having a slight 
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preference for grassland sites (Sims and Gerard 1999; Jänsch et al. 2013; Sherlock 2018), 
which is confirmed by our predictions that, however, also equally predicted forest habitats. 
This species has been said to be disturbance intolerant (Lehmitz et al. 2016; Römbke et al. 
2018), which may explain its low predicted probabilities in naturally disturbed sites (i.e., 
floodplains, bogs) as well as anthropogenically influenced habitat types.

The species we classified as “mid-range” were also predicted to occur widely in Ger-
many, albeit in much lower probabilities. The German Red List lists them all as being 
“common”. Although predicted to occur in many different habitat types, they appear to be 
more habitat discriminant, with preference optima in specific habitat types. For instance, 
A. chlorotica was predicted to occur more strongly in agrarian sites (arable fields or grass-
land), which has been reported from observational data (i.e.,Jänsch et  al. 2013; Römbke 
et al. 2018). On the other hand, D. octaedra was predicted to occur mostly in forest habi-
tats, as also noted by, e.g., Jänsch et  al. (2013), Römbke et  al. (2018), Sherlock (2018). 
Considering its acidophilus nature, its preference is likely for coniferous forests (cf. Sher-
lock 2018). While A. castaneus seems to be more generalist in nature, we predicted its 
highest occurrence probabilities to be in forests and floodplains, which is contradicted by, 
i.e., Jänsch et al. (2013), Römbke et al. (2018), and Krück (2018), who consider its prefer-
ence to also be for grasslands. Interestingly, A. longa was predicted by our models to also 
be somewhat generalist, occurring in different habitat types, but to be missing in wetter 
habitats (e.g., islands, coastal, floodplains, bogs). This is confirmed by Krück (2018), who 
attested a preference for dryer habitats, but contradicted by Sims and Gerard (1999), who 
noted its occurrence in floodplains of the UK.

The species identified as “restricted-range” all showed higher occurrence probabili-
ties limited to specific regions and habitat types. The Red List of Germany lists them all 
as being “rare” or “very rare”. The highest distribution probabilities of D. attemsi were 
more in hilly or mountainous regions of Germany; its highest probabilities were predicted 
for arable land (and secondarily in forests), which has not been noted by previous authors 
(except Sherlock 2018). B. eiseni was predicted by the models to most likely occur in for-
ests (of central and southern Germany), as also documented by Römbke et al. (2018) and 
Lehmitz et  al. (2016). A. limicola is known to be hydrophilous (Sims and Gerard 1999; 
Lehmitz et al. 2016; Krück 2018; Römbke et al. 2018; Sherlock 2018). Accordingly, the 
models predicted it to occur in floodplains with high probabilities, as well as in grasslands 
and forests (which may also be located in floodplains or similar, but possibly misclassified 
to more general habitat types in the data). The models predicted it to occur mostly in west-
ern Germany (and most strongly along the Rhine River valley), confirming Krück (2018) 
who noted its very rare occurrence in northeastern Germany. L. badensis is an endemic 
species of Germany, occurring in forests of the High Black Forest (southwestern Germany) 
(Lehmitz et al. 2016), as confirmed by the model predictions.

Interesting are the few species predicted to occur in “fringe” habitats. For instance, A. 
limicola, L. rubellus and L. castaneus were predicted to occur in marine-influenced habi-
tats (i.e., islands), and A. caliginosa, A. chlorotica and A. limicola in coastal sites; all how-
ever with low (< 35%) occurrence probabilities, indicating patchy occurrence in these habi-
tats. Notable were the large number of species predicted in moderate probabilities to occur 
in urban, industrial, and other anthropogenic sites. Although the occurrence probabilities 
in these habitat types were often low, these results represent the first of their kind and can 
help assessment of soil-biodiversity surveys in such areas.

At the community level, the inverse relationship between species richness and total den-
sity (as found primarily for north-eastern Germany) is a common occurrence in ecology, 
where an area may exhibit high individual densities, but low species richness (Verberk 
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2011). Less favorable environmental conditions may only allow the occurrence of few spe-
cies, but these in large populations, perhaps due to reduced competition from other species 
(Groves 2022). This could possibly explain the high individual density, but low species 
richness predicted for north-eastern Germany, which is known for dryer, sandy soils and 
where forests are usually coniferous plantations. In this regard, the predicted high occur-
rence probabilities of D. octaedra and L. rubellus in these areas are conspicuous, both of 
which are epigeic acidophilous (or –tolerant) species with a predicted affinity for forests. 
Personal observations have often shown high population densities of very few epigeic spe-
cies in forests on sandy soils, rendering this explanation plausible. On the other hand, the 
Bavarian Alps and Rhine valley were predicted to be among the few regions with high 
earthworm biodiversity (both total density and species richness) in Germany. The Rhine 
Valley is known for rich soils and high general biodiversity and the predictions in alpine 
regions support the Alpine convention declaration of the Alps being one of the richest 
regions in Europe in terms of plant and animal diversity (Alpine convention 2014).

Range size has long been recognized as being a good indicator for assessing a spe-
cies’ threat status, which has rarely been used for soil organisms (but see Marchán and 
Domínguez 2022 for a good example). This study did not intend to create a red list, as this 
already exists for earthworms in Germany (Lehmitz et al. 2016). However, mapping earth-
worm species’ spatial distribution and determining their geographic range size helped cat-
egorize species into range-size groups, which enables a rapid assessment of species’ threat 
status and their conservation needs and provides valuable information for setting conserva-
tion priorities (IUCN 2012a, b, 2022). Within Germany, no species was considered threat-
ened under extent-of-occurrence (EOO) criteria (all studied species’ EEOs exceeded the 
minimum threshold of 20,000 km2; IUCN 2012a, b). Nonetheless, a comparison of the 
predicted distribution maps and the calculated area of occupancy (AOO) shows that certain 
species should be of concern due to their restricted AOO range in Germany, i.e., B. eiseni, 
D. attemsi and A. limicola or due to being endemic in Germany, such as L. badensis.

Divergent opinions exist on the status of B. eiseni in Germany; while Bouché (1972) 
and Graff (1953) classified it as rare in France and Germany, respectively, this was con-
tradicted by Römbke et al. (2018) who considered the species to be common. Our findings 
tend to partly support the earlier opinions of Graff (1953) and Bouché (1972) and the inter-
mediary position of Lehmitz et al. (2016), who judged it to be moderately common (we 
prefer the term “restricted range “). While our predictions confirmed the restricted occur-
rence of B. eiseni in Hessian forests (Römbke et al. 2018) and a few other clusters, caution 
must be exercised. The species is assumed to be arboreal and corticolous, and the lim-
ited observational data may be methodologically biased, as common earthworm extraction 
methods may not sufficiently sample this species’ preferred microhabitat (Lehmitz et  al. 
2016; Römbke et  al. 2018). A. limicola is the only species studied here that is listed as 
endangered in the German Red List of earthworms. Its predicted occurrence in wetland 
sites, corroborating its status as a hydrophilous species, as well as its predicted restricted 
distribution in Germany, supports its endangered status. The remaining species should be 
viewed as species of focus in future soil- biodiversity surveys.

Since earthworm taxonomy and systematics are constantly in flux, especially with 
recent molecular studies (e.g.,Pérez-Losada et al. 2012; Domínguez et al. 2015), caution is 
perhaps advised regarding taxa that may include different morphotypes or cryptic species, 
which can exhibit different ecological preferences and, therefore, drivers of their distribu-
tion. Two examples are A. caliginosa (i.e.,Pérez-Losada et al. 2009; Briones 2011; Fernán-
dez et al. 2012) and A. chlorotica (see Lowe and Butt 2008; Dupont et al. 2011, 2022). It is 
impossible to reevaluate retrospectively the species identifications included in the analyzed 
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dataset, so that this remains an issue of taxonomy and species identification and not of 
the modelling procedures. Nonetheless, it must be mentioned that data used in the current 
study can partly represent species complexes, and the predicted distributions may subsume 
these.

Especially noted is furthermore L. badensis, an endemic species found in the high Black 
Forest region, and which is likely endangered (Lehmitz et al. 2016). Although insufficient 
observational data was available for calculating EOO or AOO, it was predicted to have 
a very restricted and narrow distributional range, corroborating its assessment as endan-
gered. This species also highlights an important aspect of species distribution modelling: 
although the models predict potential occurrence e.g., in the Bavarian Alps, the species has 
never been found to occur there. The model results primarily show the high potential habi-
tat suitability for the species in the Alps, and are not proof of occurrence, thus underscor-
ing its status as endemic to southwest Germany.

Conclusion

This study is, to the best of our knowledge, the first comprehensive analysis modelling 
earthworm distribution at a national scale, including the most important species and differ-
entiating among multiple environmental drivers. Earlier earthworm SDM studies generally 
used single modelling frameworks (GLM, GLMM, GAM, MaxEnt or BRT; i.e., Rutgers 
et al. 2016; Philips et al. 2019; Marchán et al. 2016; Palm et al. 2013; but see Marchán et al. 
2016; Marchán and Domínguez 2022 for ensemble species distribution models (ESDMs)). 
Given the potential of machine learning models with high predictive performance, this 
study compared the predictive performance of traditional regression models (GLM, GAM) 
with machine learning algorithms (GBM and RF) to identify the best statistical model for 
predicting earthworm biodiversity across Germany. The predictive performance of RF was 
outstanding.

These predictions, including classifying species into different range-size groups as well 
as community and species- specific responses to a broad spectrum of environmental vari-
ables, provide an effective national-scale approximation of earthworm distribution and its 
drivers in Germany. Such information is invaluable for future scientific field studies and a 
prerequisite for soil-biodiversity monitoring programs, which require standardized baseline 
values for result assessment. A tool is currently being developed to extract reference values 
from the model results based on specific site conditions, explicitly for use in soil-biodiver-
sity monitoring programs. While such programs will help validate the model results, we 
call for wide-spread recording of environmental (especially soil) parameters concomitantly 
with biodiversity surveys, to improve the thematic association between species and envi-
ronmental drivers and, thereby, model precision.

Modelling and mapping earthworm distributions further allowed grouping species into 
geographic range-size classes, providing vital information for decision making on conser-
vation priorities. Previous studies were improved by projecting species distribution into 
10 habitat classes at the top hierarchy level (EUNIS level-1 habitat types). Despite this 
improvement, earthworm distribution can still be highly variable within level-1 habitat 
types. For instance, “forest” can be subdivided into deciduous, coniferous, mixed decidu-
ous/coniferous forests, among others; management measures in agricultural habitats have 
a strong influence on earthworm communities. Availability of high-resolution raster data 
at EUNIS level-2 or finer hierarchies will increase model precision on species’ habitat 
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preferences. Importantly, recording of habitat types at a more differentiated level during 
soil-biodiversity surveys will highly improve future data syntheses, allowing better con-
servation decisions. Although the RF model was able to predict the potential distribution 
of some species in largely un-sampled areas of northern Germany, thereby demonstrating 
its ability as a “non-overfitting” model to predict beyond the training datasets, this cannot 
replace true field observations. We therefore also call for more data to be collected in these 
un-sampled areas and be made readily available for future synthesis analyses.

Attention should be given to species with restricted ranges, such as D. attemsi, B. eiseni, 
and L. badensis. For species with clearly defined habitats, such as A. limicola in wetlands 
and D. octaedra in forests, the habitats in which they can be found should be monitored 
for possible habitat degradation (Global 2022). We further suggest detailed studies on the 
endemic L. badensis, which would allow more precise SDMs and calculation of geographic 
range sizes, providing a better assessment of its realized distribution and protection needs.
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