
ARTICLE

Conservation agriculture increases the soil
resilience and cotton yield stability in climate
extremes of the southeast US
Amin Nouri 1,7✉, Daniel C. Yoder1, Mohammad Raji2,8, Safak Ceylan1, Sindhu Jagadamma 1, Jaehoon Lee1,

Forbes R. Walker 1, Xinhua Yin3, Judith Fitzpatrick4, Brady Trexler4, Prakash Arelli5 & Arnold M. Saxton6

Climate extremes pose a global threat to crop security. Conservation agriculture is expected

to offer substantial climate adaptation benefits. However, synergistic effects of conservation

practices on yield during normal versus extreme climates and underlying regulatory

mechanisms remain elusive. Here, we analyze 29-years of climate data, cotton (Gossypium

hirsutum L.) yield, and soil data under 32 management practices in Tennessee, USA. We find

that long-term no-tillage enhanced agroecosystem resilience and yield stability under climate

extremes and maximized yield under favorable climate. We demonstrate that no-tillage

benefits are tied with enhanced soil structural stability and organic carbon. No-tillage

enhanced the effectiveness of legume cover crop in stabilizing cotton yield during relatively

dry or wet, and dry years, while nitrogen fertilizer rate and precipitation timing, controlled

yield stability in wetter years. Our findings provide evidence-based insights into how man-

agement strategies can enhance agroecosystem resilience and production stability in climate

extremes.
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C limate extremes pose a global threat to agricultural produc-
tion and future food, feed, and fiber security. The economic
cost of crop yield losses inflicted by extreme climatic events

between 2003 and 2014 in developing countries around the world
was about $80 billion1. In the U.S., the number of extreme weather
incidents costing more than $1 billion has steadily increased in recent
decades2. Projections of climate change suggest that with rising
average global temperature and the impact of warming weather on
the water cycle, the frequency of dry spells will increase in subtropical
and lower mid-latitude terrestrial regions. While the average pre-
cipitation is expected to decline in most regions, light and moderate
rainfall will shift to less frequent higher-intensity events3. This is
expected to increase the precipitation contrast between dry and wet
regions and seasons, leading to further increases and decreases in
storm erosivity in wet and dry regions, respectively4,5. It is thus likely
that the adverse impact of large seasonal and annual weather varia-
bility on natural resources and field crop production will be more
pronounced, even in the near term6.

The U.S. southeastern and lower southern plains—a region
known as the cotton belt—comprise almost 17% of global upland
cotton production, representing over $6 billion in total revenue
and approximately 38% of the world’s exports of raw cotton
fiber7. The cotton belt also outranks the rest of the country in
billion-dollar extreme weather disasters2. Rising summer tem-
peratures (especially during the night) are also evident in the vast
majority of the cotton belt8. Although cotton is considered a
drought-tolerant plant, warm summer nights have a documented
impact on yield losses by stimulating respiration more than
photosynthesis9. Altered rainfall distribution has also led to more
frequent soil moisture deficits during the growing seasons3, while
higher off-season heavy rainfalls have raised concerns about
potential erosion and nonpoint source pollution.

Far-reaching agroecological and socioeconomic consequences
of climate extremes demand a systems approach to climate-
resilient agroecosystems10. As an integral component of the
complex multidimensional ecological resilience concept increased
agroecosystem resilience to climate perturbations requires greater
emphasis on improving the system’s self-regulatory capacity11.
Soil, as a central linkage of interconnected atmospheric and ter-
restrial domains, is a primary element of agroecosystem resilience
to adverse climate conditions. The soil system does climate-
buffering through regulating the hydrologic cycle, energy
exchange, and temperature12,13, thereby alleviating stresses on
plants and biota. The climate adaptability of the soil system is
strongly related to intrinsic attributes while careful land use and
judicious soil management have a documented impact on soil
structural stability, yielding greater permeability during heavy
rainfall, enhanced water storage in drought, and improved gas
exchange for biological respiration and heat acclimation14,15.
Such management practices offer a great potential to enhance the
soil system’s capacity to resist and recover from climate pertur-
bations, thereby maintaining vital soil functions and services.

Among the numerous benefits of conservation agricultural
practices such as minimized soil disturbance, cover cropping, and
crop diversification,16 has suggested that improved soil organic
carbon (SOC), soil aggregation, nutrient cycling, and biodiversity
are the most important factors enhancing soil resilience and
recovery potential, either directly or by invoking other processes.
However, the extent to which those qualities can uphold soil
productivity under various types, severities, duration, and timing
of climate extremes is poorly understood. The historical and
prospective impact of increasing climate extremes on agroeco-
system productivity and environmental services have been
extensively reported in the literature17–19. There is still a lack of
advanced knowledge, however, about the potential of agricultural
practices to enhance soil system adaptability to climate extremes6.

Soil resilience comprises a key component of both “soil quality”
(or “soil health”) and “soil degradability”, although certain dis-
crepancies exist. For example, the common soil quality assess-
ment frameworks barely consider the prolonged consequences of
soil degradative processes (e.g., soil erosion) and changes in
short- and long-term soil productive, environmental, and capital
functions when exposed to extreme climate events6. In these
models, therefore, anthropogenic soil disturbances such as tillage,
machinery traffic, or biomass removal are the primary stressors
that agroecosystems and their managers must deal with to
maintain “soil quality”10,20. Likewise, indicators of soil degrad-
ability rarely address the soil’s capacity to recover from envir-
onmental stresses. Therefore, under average climate conditions
with a low proportion of extreme to near-normal years, soil
quality indicators may well represent the sustainability of soil
management systems. However, with the manifest increase in
extreme weather conditions, integrating the soil degradation
process into soil quality can provide operational insight into
whole-system attributes of soil resilience and sustainability.

Several methods have been recommended for assessing soil
resilience, the majority of which are based on soil “malleability”,
defined as changes from the initial state in individual soil quality
indicators after exposure to stresses16,21,22. This approach can be
useful when a static snapshot of a soil-specific situation at a given
time and space is desired. However, it neglects many spatio-
temporally dynamic characteristics of the soil system and stres-
sors, as well as the external factors influencing soil resilience.
Among those factors is the interaction between multiple soil
properties (soil function), recovery rate (elasticity), terrain char-
acteristics, stressor attributes (e.g., severity, magnitude, timing,
duration, and target), and soil surface cover. A quite different
approach to characterizing soil resilience is evaluating soil capa-
city to sustain its productivity23, environmental24, and capital25

functions under adverse climate conditions. The soil productivity
function (e.g., biomass) is a surrogate for the multi-faceted
interactions among soil–landscape–climate properties and pro-
cesses that determine the capacity of soil to uphold production
stability in unfavorable climates. In addition, soil productivity
functions can represent the effect of physical damage due to cli-
mate extremes on yield. Finally, external inputs such as fertilizers,
lime, and irrigation can enhance production stability in the face
of climate stresses without considerably contributing to the soil
self-regulatory capacity. As such, a measure of soil resilience
based on productivity functions should be informed by detailed
knowledge of the type and level of external inputs.

Climate extremes are complex natural phenomena with a wide
range of definitions based on the exposed resource and spatio-
temporal extent. The literature displays large inconsistencies
regarding the conceptual and operational definition of drought,
making it difficult to compare and synthesize results26. Defining
drought based on the local divergence of climate parameters from
long-term normals can considerably reduce the applicability of
study outcomes across scales. The use of standardized drought
indices has been suggested by26 as an effective approach to
resolve this issue. Drought indices assimilate data on precipita-
tion, evapotranspiration, streamflow, and other weather inputs
into a single numerical value, allowing for multi-scalar evaluation
of weather anomalies. These indices are currently used by pro-
grams such as the U.S. Drought Monitor and the European
Drought Observatory for drought monitoring and early warning
at regional to global scales. However, these climate-based early
warning systems may not be well-suited to predict the risk of crop
failure across plants and management systems. Plants vary largely
in drought/wetness tolerance and heat and moisture demand
across phenological stages27. The USDM outcomes are utilized by
the United States Department of Agriculture (USDA), the Farm
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Service Agency (FSA), and the Internal Revenue Service (IRS) to
support decisions on eligibility for low-interest loans, livestock
forage programs, and tax deferrals28. Assessment and prediction
of production vulnerability, and of responsive environmental,
financial, and social programs require the drought assessment
systems to be calibrated for crop- and management-specific cli-
mate adaptation potentials. However, it should be acknowledged
that developing such systems requires information input from
multiple rather than a single long-term experiment as
presented here.

Developing climate-resilient agricultural practices is the anchor
of many national and global climate adaptation frameworks29,30,
but the recommended practices are often not based on experi-
mental evidence and do not provide operational details, so remain
generic and impractical6. The major limitation in developing
evidence-based strategies is the lack of long-term soil and crop
data under diverse management systems across a representative
range of different climate conditions. Long-term field experi-
ments with supervised management systems and controlled biotic
stresses—e.g., pest, diseases, weed pressure—are essential in
understanding the dynamic effect of management systems on soil
adaptive capacity under favorable and unfavorable environmental
conditions.

In this study we address the long-term impacts of various crop-
management systems on the stability of cotton yields in the face

of climate extremes. We do this by utilizing twenty-nine years of
cotton yield data across thirty-two management systems, along
with shorter-term measured soil biophysical properties, and a
suite of the most common drought indices to (1) identify the
most relevant climatic variables explaining long-term fluctuation
in cotton yield; (2) identify the management systems resulting in
the greatest yield stability across extreme climate conditions; and
(3) better understand underlying soil mechanisms controlling soil
resilience and consequently upholding yield stability in extreme
climate conditions. Here we show that among climate indices,
cumulative standardized precipitation index (SPI) and standar-
dized precipitation evapotranspiration index (SPEI) during the
growing season best explains the long-term mean cotton yield
variabilities. Among the raw climate variables, mean soil tem-
perature (MST) during the entire growing season, and especially
low values of MST in August was the most critical yield-limiting
factor. Here we show that throughout the May–October growing
seasons, drought severity in August has the most detrimental
effect on cotton yield. Our results suggest that long-term no-
tillage (NT) is a practice that maintains yield stability in unfa-
vorable climate conditions while enhancing crop yield in favor-
able years. Across N rates, legume cover crops—particularly hairy
vetch (HV)—maintained higher yield than cereal and no cover
crop treatments in near-normal and relatively dry (RD)/wet years.
However, they were not effective in maintaining yield stability in
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Fig. 1 The coefficients of determination for quadratic regressions, explaining yield variability based on the monthly and seasonal variability of drought
indices and raw climate variables. The R2 values represent the strength of the relationship between annual mean crop yield and monthly and cumulative
growing season (GS) values of a drought indices, including standardized precipitation index (SPI), standardized precipitation evapotranspiration index
(SPEI), palmer drought severity index (PDSI), self-calibrated palmer drought severity index (sc-PDSI), palmer hydrological drought index (PHDI), palmer
moisture anomaly index (Z-index), palmer modified drought index (PMDI), and percentage of normal precipitation (PNP) and b raw climate variables
including cumulative precipitation (PRCP), maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tmean), maximum soil
temperature (STmax), minimum soil temperature (STmin), and mean soil temperature (STmean).
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dry and wet years. High SOC concentration is a common char-
acteristic of high-yielding practices in near-normal and RD/wet
years. However, yield stability in dry and wet years is more
strongly linked to higher wet aggregate stability (WAS) and N
content.

Results
Relationship between climatic factors and long-term yield
variability. The relationship between the time series of overall
cotton yields and climate variables varied largely across drought
indices/climate indicators and cotton developmental stages
(Fig. 1). Drought indices with a varying degree of association
showed a quadratic relationship with the long-term mean cotton
yield. In general, the coefficient of determination was higher for
management systems with higher yields. Among all indices,
cumulative SPI (R2 = 0.68) and SPEI (R2 = 0.63) during the
growing season exhibited the strongest relationship with the
mean cotton yield across management systems (Fig. 2). By
accounting for the effect of potential evapotranspiration (PET) in
water balance, SPEI led to one unit greater drought severity
compared with SPI, resulting in the x-axis difference in Fig. 2.
Throughout the May–October growing seasons, drought severity
(represented by SPI, SPEI, and Palmer Z-index) in August had
the most detrimental effect on cotton yield (Fig. 1a). Long-term
cotton yield showed an identical responses to PET and degree
days (DD60’s). The relationship between long-term cotton yield
and raw climate variables including monthly air temperature and
cumulative precipitation was similar to those of drought indices,
but with lower R2 values (Fig. 1.b). However, yield responded
differently to air and soil temperatures. MST during the entire
growing season (R2 = 0.45), and especially low MST in August
(R2 = 0.38) was the most critical yield-limiting factor among the
raw climate variables. Air temperature in either individual
months or during the entire growing season was poorly related to
the cotton yield. Among the possible 37 input variables, the
MARS procedure selected SPI-GS (SPI in the growing season),
SPEI-GS, and MST-GS to explain 78% of the variability in long-
term cotton yield. Diagnostic plots and model equations are given
in Fig. S1. The selected variables were utilized for the hierarchical
clustering of the experimental years into different climate con-
ditions. The resulting dendrogram grouped experimental years
into six clusters, including dry (D; cluster A; 2 years), RD (cluster
B; 3 years), near-normal (NN; cluster C; 9 years), high-yielding
near-normal (NNhy; cluster D; 7 years), relatively wet (RW;
cluster E; 5 years), and wet (W; cluster F; 3 years) years (Fig. S2).

The impact of management system on yield stability across the
climate conditions. Long-term mean cotton yield in the current
experiment showed a strong correlation with the published mean
yield across Tennessee (r= 0.80) and to a smaller extent with the
mean yield across the U.S. Cotton Belt (r= 0.60)31 (Fig. S3).
Considering the yield outcome in low- and high-yielding years
and disregarding the source of environmental stress, management
systems with NT showed the most consistent effect on yield
stability in poor environmental conditions (Fig. 3e, f, i, j). NT also
increased yield potential for management systems with legume
cover crops (Fig. 3a, b). Legume cover crops, in turn, decreased
the yield gap among the management systems with a range of N
application rates (Fig. 3g, h). Across drought severities, NT
maintained a higher cotton yield than CT. The cover crop effect
was significant in RD, near normal (NN), and near-normal high
yield (NNhy) years, but not in dry (D) and wet (W) years. The N
rate and N rate by cover crop interaction were significant in all
climates except for the dry years (Table 1 and Table 2). In dry
years, where the drought severities exceeded −3.4 (SPI) and −5.1

(SPEI) during the growing seasons, cotton yields under all
management systems fell below 50% of the global mean yield
(1 Mg ha−1) (Fig. 4). Within the lower 10 percentile of global
mean yield (up to 0.57 Mg ha−1), NT significantly lowered the
risk of yield losses compared with CT, whereas the effect of cover
crop, N rate, and their interaction was not significant (Table 1). In
general, the lowest probability of crop failure was observed within
RD, NN, and NNhy climates with drought/wetness severities
ranging between SPI scores of −1.7 to 0.46 and SPEI scores of
−2.2 to 0.78 (Fig. 4). Within these climates, higher N rates and
legume cover crops predominantly controlled higher yield out-
comes. However, in extreme climates, both in dry (D) and wet
(W) years, NT was the management that maintained higher
cotton yield, as shown by the F-values in Table 2. The most
significant contribution of NT to higher yield stability occurred in
wet climates, where NT systems yielded on average 22% more
cotton than CT systems. In W (SPI averaging 2.92 and SPEI
averaging 3.61) and RW (SPI averaging 1.27 and SPEI averaging
1.90) years, the cover crop effect was not significant, but a
minimum N rate of 34 kg ha−1 remained critical to maintaining
yield stability. Figure 5 demonstrates the yield benefits of tillage,
cover crop, and N rate compared with the corresponding control
treatments in different climates. In all climates except for wet
years, HV planted on either CT or NT resulted in greater yield
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Fig. 2 Quadratic relationships between drought severity and detrended
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95% confidence limits.
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benefits than NC (control no cover crop treatment). CC, the other
legume cover crop, outperformed NC in D, RD, NNhy, NN, and
RW climates, but only when it was planted in an NT system.
However, management systems with both HV and CC cover
crops exhibited lower yields than those with NC in wet years.

Relationship between soil resilience indicators and yield sta-
bility across drought and wetness severities. Among soil resi-
lience metrics, SOC provided the strongest explanation
(R2= 0.87) for yield stability under a range of drought and
wetness severities (Fig. 6). ANOVA tests showed that intercepts,
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linear and quadratic slopes, and their interactions with climates
differed (P < 0.001) among climate conditions (Table 2). The
linear slope indicated 17 and 16% decrease in the probability of
yield losses per unit increase in SOC from 7 up to 10 g kg−1 in RD
and NNhy climates, respectively. In RW and NN climates a unit
increase in SOC lowered the probability of yield losses by 12 and
10%, respectively. In W climate the corresponding decrease in the
risk of yield losses was 5%, while SOC had a negligible effect on
increasing yield stability in D climate. Total bound N (TNb)
explained 78% of the variability in cotton yield stability across
climate conditions (Fig. 6), with the intercept, common linear
slope, and linear by climate interaction differing (P < 0.05) among
climate conditions. Although the common quadratic slope was
significant, it did not considerably relate to yield stability in the
observed range of TNb. The effect of TNb on yield stability in
different climates revealed an almost similar effect to that seen in
SOC. During NNhy and RD years, greater TNb levels effectively
reduced the risk of yield losses by 6.0 and 5.9% per unit increase
in TNb, respectively. In contrast to SOC, increases in TNb con-
centration up to 200 mg kg−1 resulted in 5.0 and 5.3% reductions
in the probability of yield losses in D and W years, respectively.
Small differences in linear slopes among climate categories indi-
cated that of the soil resilience metrics, WAS was the most critical
factor in decreasing the risk of crop failure in the most extreme
(W and D) climates. WAS explained 71% of the variability in
cotton yields stability across climate conditions. Within the WAS
values from 25 to 39%, a unit increase in WAS lowered the

probability of yield loss by 2.4% in NNhy and RD climates. The
corresponding values for RW, NN, W, and D climates were 2.2,
2.2, 2.1, and 2.0%, respectively (Table S1). The POxC and MB
exhibited similar relationships with the yield stability; with
increasing POxC and MB values a decreasing common linear
yield loss slope was evident (P < 0.05), but the slopes did not
differ among different climates. DOC did not significantly relate
to yield stability.

Discussion
The rainfed water supply and controlled biotic stresses in this long-
term experiment provided a unique opportunity to observe the
direct impact of true climate perturbations on yield. In general, soil
temperature anomalies in August (optimum MST � 27–31 °C) and
rainfall deficiency in August (optimum � 100–140mm) and to
some extent in June (optimum � 50–100mm) were the most cri-
tical yield-limiting climate factors. Considering the cotton growth
life cycle in the study region, August is the period of peak bloom to
open boll formation, which coincides with peak water consumption
by cotton plants due to high transpiration and evaporative water
demand. Along with the sufficient water supply, adequate accu-
mulation of heat units upon the appearance of first bloom is
essential for achieving boll maturity and fiber quality32. Likewise,
the first square to first bloom development occurs mostly within
June and is a critical time for avoiding water deficit stress. Cotton
vegetative growth is rapid within the three weeks following the

Table 1 Means for cotton yield (Mg ha−1) under tillage, cover crop, N rate (nitrogen rate), and N rate × cover crop interaction in
dry (D), relatively dry (RD), near-normal (NN), high-yielding near-normal (NNhy), relatively wet (RW), and wet (W) years and
across all climate conditions.

Treatments D RD NN NNhy RW W Across climates

Number of years 2 3 9 7 5 3

Tillage means
CT 0.48b 1.10b 1.08b 1.07b 0.91b 0.68b 1.00b
NT 0.52a 1.14a 1.16a 1.11a 0.97a 0.83a 1.04a
Cover crop means
NC 0.50a 1.05c 1.10c 1.04c 0.92a 0.78a 0.98c
WW 0.48a 1.04c 1.05c 1.03c 0.97a 0.78a 0.97c
CC 0.50a 1.15b 1.14b 1.10b 0.92a 0.73a 1.03b
HV 0.53a 1.24a 1.20a 1.18a 0.96a 0.75a 1.10a
N rate means
0 0.48a 0.96c 0.95c 0.94b 0.87b 0.66b 0.88c
34 0.51a 1.10b 1.13b 1.12a 0.96a 0.79a 1.03b
67 0.52a 1.20a 1.19a 1.13a 0.97a 0.78a 1.08a
101 0.49a 1.20a 1.22a 1.16a 0.98a 0.80a 1.09a
Cover × N rate means
0 ×NC 0.43a 0.82f 0.84f 0.85f 0.75e 0.61e 0.77f
0 ×WW 0.46a 0.80f 0.76f 0.78f 0.81de 0.63e 0.74f
0 × CC 0.48a 1.03de 1.10de 1.02e 0.91bcd 0.70cde 0.96e
0 × HV 0.53a 1.18abc 1.12cde 1.11cde 1.01ab 0.71bcde 1.05cd
34 × NC 0.50a 1.01e 1.06e 1.01e 0.96b 0.77abcd 0.96e
34 ×WW 0.49a 1.02de 1.04e 1.06de 0.94bc 0.76abcde 0.97e
34 × CC 0.53a 1.12cd 1.17bcd 1.12bcd 0.93bc 0.78abcd 1.04cd
34 × HV 0.55a 1.27a 1.27a 1.27a 1.01ab 0.84abc 1.16a
67 × NC 0.55a 1.19abc 1.24ab 1.12bcd 0.96bc 0.86ab 1.09bc
67 ×W 0.50a 1.19abc 1.20ab 1.13bcd 1.02ab 0.85abc 1.08bc
67 × CC 0.50a 1.20abc 1.10de 1.09cde 0.92bcd 0.65de 1.02de
67 × HV 0.52a 1.24ab 1.22ab 1.20ab 0.99ab 0.76abcde 1.11ab
101 × NC 0.51a 1.15bc 1.24ab 1.16bcd 1.01ab 0.86ab 1.10abc
101 ×WW 0.47a 1.16bc 1.21ab 1.16bc 1.10a 0.87a 1.10abc
101 × CC 0.47a 1.25ab 1.22ab 1.17bc 0.94bc 0.79abcd 1.09abc
101 × HV 0.51a 1.25ab 1.19abc 1.14bcd 0.85cde 0.69cde 1.07bcd

CT conventional tillage, NT no-tillage, NC no cover crop (control),WW winter wheat, CC crimson clover, HV hairy vetch. Means with no common letter in a column within the means of tillage, cover crop,
N rate, or cover × N rate are significantly different based on the protected LSD at P < 0.05.
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emergence of the first square, requiring rapid uptake of phos-
phorous (P) and potassium (K) through the aqueous medium33.
Water deficiency within this period can adversely affect the biomass
production and the number of fruiting sites as well as the earliness,
which is particularly important in short-season environments. The
effect of sub-seasonal and seasonal climate fluctuations on the
variability of cotton yield was well-addressed by SPI, SPEI, and
MST indices/indicators. Management systems with higher global
yields generally showed a stronger relationship with climate indices.
This indicates that high-yielding management systems diminish the
adverse effect of other environmental stresses on yield and boost
greater yield outcomes with improving climate conditions. SPEI
index includes the PET, but this did not improve the predictability
of yield variability over that from SPI. This can perhaps be attrib-
uted to the indeterminate relationship between PET and DD60’s.
Though rising air temperature during critical cotton growth stages
may enhance the evaporative loss of water, sufficient heat unit
accumulation (DD60’s � 2300) is essential to supporting many
physiological processes that eventually determine cotton yield. As
shown in Fig. 1, PET, DD60’s, and Tmean across cotton growth
stages demonstrated weak but very similar relationships with yield
variability. The quadratic relationship between PET and yield
variability implies that, for example, in August, there is an optimum
range of PET that maintains a high yield, while lower and higher
values lead to yield losses. This is unlikely however that low PET in
an RD month like August in such a rainfed system causes yield
decline. This inconsistency is likely since low PETmeans low degree
days due to the similar effect of air temperature on PET and DD60’s,
but their contrasting effects on yield outcome. Alternately, both
seasonal and sub-seasonal variations in MST were more strongly
related to the yield variability (Fig. 1). In addition to the incidental
solar radiation, the soil temperature is strongly affected by soil
biophysical properties such as texture, compaction, organic matter
content, and surface cover. Management can modify the majority of
these factors, thereby altering the soil water regime, so soil tem-
perature variations may not be well represented by air temperature
variations34. Maximum yield outcome was obtained when MST
within the time from first bloom to open boll development varied
between 27 and 31 °C. Soil temperatures outside this range caused
significant yield reductions. Residue cover left by conservation til-
lage systems such as NT can effectively buffer extreme summer heat
by insulating the soil surface and enhancing albedo35, though this
effect may gradually diminish throughout the growing season36,37.
Accelerated residue retention by cover crops can further strengthen
the heat buffering capacity of NT soil. Moreover, reduced soil
manipulation stimulates organic matter accumulation in the topsoil
and increases micropore volume, which collectively contributes to a
higher soil water retention capacity38,39. Except for the two
extremes of near-saturated and near-dry conditions, within a wide
range of soil moisture contents water and vapor movement occurs
simultaneously with temperature gradient and vice versa. A wetter
soil by virtue of its greater thermal conductivity and heat capacity
can decrease the diurnal temperature cycle amplitude. Therefore,
soil temperature may relatively well represent the management
effect on heat regulation. However, further long-term temperature
monitoring at different soil depths is needed to fully comprehend
the role of conservation practices on soil heat regulations and their
impact on yield variability.

NT was the primary management practice boosting yield in
favorable climates and reducing yield losses in unfavorable cli-
mate conditions. Even though the yield benefit of NT compared
with CT was smaller in generally favorable climate conditions
than the effect of higher N rates (67 and 101 kg ha−1) or legume
vs non-legume cover crops, NT exhibited a consistent yield
benefit in all climate conditions (Table 1 and Fig. 5). In addition,
NT increased the general effectiveness of cover crops—inT
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particular legumes—in enhancing the yield outcome across cli-
mate conditions40 (Fig. 5). Moreover, NT considerably increased
N use efficiency compared with CT. For example, management
systems with 34 kg N ha−1 on NT delivered on average greater
yield benefits than systems with 67 kg N ha−1 on CT (Fig. 5).
Reducing N fertilization by 50% while maintaining a high yield in
all climate conditions (except for RD) has profound environ-
mental and economic implications. For instance, it has been
observed that net agronomic nitrous oxide emissions were gov-
erned by N fertilizer rate41. However, in the present study, the
major N benefit of legume cover crops was associated with RD
and near-normal years. In wet (W) and relatively wet (RW) years
WW with the maximum N rate (101 kg ha−1) was associated with
higher yields (Table 1). This is likely due to higher N loss through
leaching, denitrification, and runoff in wet conditions. All wet
(W) years in this study were characterized by heavy early growing
season rainfall, particularly in May and June. Excessive early
season rainfall—especially under cover crops with high residue
mulch—is likely to adversely affect crop stand and reduce yield
(Fig. 5). It is tied with low soil temperature due to lower heat
exchange and high moisture content, which may hinder timely
seed germination or plant establishment. Also, among wet years,
late summer and fall storms in 2018 starting in September
delayed harvest and caused major boll weathering and yield
decline. Generally, the increasing global atmospheric temperature
has been assumed to benefit crop production by extending
growing seasons in some regions42. However, increasing surface
temperatures evaporate more water into the atmosphere, which
may cause yield losses by spawning more intense late summer
and fall storms43–45. Combining WW cover crop either with NT
or CT did not prompt significant yield benefits greater than NC
in any climate condition. In general, the yield on CT management
in most climate conditions remained highly dependent on
enhanced N fertilization. The only exception was dry years, in

which enhancing N rate beyond 67 kg ha−1 decreased yield in
both CT and NT systems. A strong relationship between long-
term mean cotton yield variability in the current rainfed experi-
ment and the broader regional yield data indicates that yield at a
regional scale is still dictated by climate conditions, especially in
wet and dry years (Fig. S3). Although this may not be fully
addressed through a single long-term experiment, this relation-
ship signifies the importance of climate early warning systems
that account for the crop- and management-specific vulner-
abilities to climate extremes across the phenological stages. Thus,
the precise auxiliary practices (e.g., irrigation, drainage, fertiliza-
tion, cover crop planting and termination, and harvest schedul-
ing) could be implemented on time to avoid considerable
economic losses.

Our results suggest that greater SOC concentration is key for
improved yield stability in NN and RD and wet climate condi-
tions. The minimum threshold of 10–15 g kg−1 SOC suggested
by46 to maintain soil resilience, restore soil biodiversity, and
improve structural stability is in perfect accord with our obser-
vations (Fig. 6). However, there was a minimal effect of higher
SOC on yield stability in dry and wet years (Table S1). Improved
soil structural stability as represented by WAS proved to be the
primary soil attribute linked to maintained yield stability under
extreme climates, particularly in wet years. Soil aggregates phy-
sically protect terrestrial carbon pool and the level of aggregation
and their stability determine the severity of fluvial, aeolian, and
gaseous soil, carbon, and nutrient losses47. Climate forces such as
kinetic rainfall energy or aeolian abrasion are known to disrupt
soil aggregates. The resultant particles are prone to transport,
carrying nutrients and C, and forming surface crusts. This process
can promptly and chronically decrease productivity by reducing
available water and nutrients, depleting SOC, and impeding air
and water circulation. The positive relationship between SOC and
WAS in this study (r= 0.65) corroborates previous findings on
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the linkage between SOC and WAS38,47,48. Soil total bound
nitrogen, TNb was strongly related to yield stability in extreme
climate conditions (Fig. 6 and Table S1). Besides being an
essential nutrient for plant growth, nitrogen along with phos-
phorus and sulfur are important elements in the process of bio-
mass humification49, which in turn contributes to the longevity of
soil structural stability and resilience. Retention and supply of N
in acute climate conditions may increase soil resilience through
multiple processes, such as the regulation of water and nitrate
influx and efflux rate, maintaining air–water balance for con-
tinued N mineralization and nitrification, and heat regulation in
dry periods to avoid N volatilization. The maintenance of the N
balance is thus an important indicator of climate-resilient
agroecosystems.

Previous studies have demonstrated the regulatory influence of
conservation practices on key soil functions—e.g., water, heat,
and nutrient fluxes, structural hierarchy and stability, carbon
sequestration, and biological vitality and diversity15,37,38,50. Such
a soil system is expected to provide improved resilience to
extreme climate events such as torrent rainfalls, heat waves, and
droughts, thereby reducing the climate stresses on plants and
stabilizing crop yield. The effect of improved overall soil health on
crop yield has been shown to become more evident over time51.
However, there is a lack of sufficient long-term crop yield data
from different conservation practices exposed to a representative
range of climate conditions. Consequently, there is little evidence-
based information regarding the role of conservation practices in
the climate adaptability of agroecosystems. Our study provides

insight into the long-term interaction between climate extremes
and yield stability under 32 tillage, cover crop, and nitrogen rate
practices. We demonstrate how management-induced changes in
soil condition, control soil resilience which in turn supports yield
stability during unfavorable climate conditions. Our findings
indicate that long-term NT provides a consistent basis for greater
yield stability across climate conditions. In addition, NT improves
the effectiveness of cover crops, particularly legumes, in drought
mitigation and crop yields maintenance. Moreover, NT provides
those benefits with relatively lower dependence on nitrogen fer-
tilizer which has important environmental and economic impli-
cations. We defined the drought and wetness severities based on
standardized drought indices to enable cross-scale evaluation,
comparison, and synthesis of results. Demonstrated crop-and
management-specific vulnerability of crop yield to climate
extremes provides insight into climate-resilient agroecosystem
management strategies. However, it should be acknowledged that
these results represent a limited geographic scale and soil resi-
lience has been quantified based on a limited number of variables.
Therefore, further long-term studies are required for improved
quantification of the soil resilience concept and its linkage with
crop yield stability under climate extremes.

Methods
Long-term experiment. This study was conducted using data from a long-term
rain-fed plot-scale cotton experiment at the University of Tennessee’s West Ten-
nessee AgResearch and Education Center in Jackson, TN, USA (35°37′N: 88°51′W,
altitude 113 m). The humid subtropical (Köppen classification) climate of the study
region is characterized by a mean annual temperature of 15.5 °C and mean annual
precipitation of 1375 mm. The experiment was originally initiated in 1981 on a 2-
hectare area. The complete set of current treatments has been in place since 1984.
The experiment is located on Lexington silt loam (fine-silty, mixed, thermic Ultic
Hapludalfs) with a field slope ranging from 0 to 2%. The experiment layout
comprises a cross-classified arrangement of four nitrogen (N) fertilizer rates: 0, 34,
67, and 101 kg Na ha−1; four cover crop treatments: winter wheat (WW, Triticum
aestivum L.), HV (Vicia villosa), crimson clover (CC, Trifolium incarnatum L.), and
no cover crop (NC, “winter weeds”); and two tillage systems: conventional tillage
(CT) and NT; thus totaling 32 treatment combination with four replications
established in 128 plots in a randomized complete block design with split–split
plot. The experiment was initiated in 1981, and the complete set of current
treatments have been in place since 1984. Cover crops are terminated in late April
to early May with 3.51 L ha−1 of Gramoxone® SL 2.0 (N, N-dimethyl-4,4-bipyr-
idinium dichloride) (Syngenta Global). Within 10 days, plots are broadcast with
ammonium nitrate (NH4NO3) at the assigned rates. The CT treatments are double
disked to a depth of 10 cm and harrow leveled to prepare the seedbed. Cotton is
seeded uniformly in all plots. Cotton cultivars planted through the course of the
experiment included Deltapine 50, Stoneville 825, Stoneville 474, Deltapine 425,
Deltapine 451, and Phytogen 375. In October of each year the cotton was har-
vested, ginned, and lint yield was recorded.

Characterization of climate extremes. Historical daily precipitation and air
temperature data were recorded by a meteorological station at the experimental
site. Weather anomalies were characterized using both raw climatic data and
drought indices. To calculate the drought indices, we used version 1.0.4 of the
“climate-indices” software package for the Python language52. The drought indices
used, included SPI, SPEI, palmer drought severity index (PDSI), self-calibrated
PDSI (sc-PDSI), palmer hydrological drought index (PHDI), palmer moisture
anomaly index (Z-index), palmer modified drought index (PMDI), and percentage
of normal precipitation (PNP) (fig. S5). The SPI is the number of standard
deviations of the cumulative precipitation from the long-term median. To calculate
SPI, a three-parameter gamma probability density function is fitted to the time
series of precipitation data. The associated probability density distribution is then
transformed to a normal distribution53. The SPI can be calculated at time scales
from ¼- to 48-months to reflect the availability of different water resources. We
calculated SPI for ¼- and 1-month scales since plants respond relatively quickly to
precipitation anomalies. The SPEI follows the same computational procedure as
SPI but additionally accounts for the effect of temperature variability in drought
assessment. The PET required by SPEI for the assessment of water balance was
calculated using the Thornthwaite54 model. The PDSI is another well-known index
estimating the duration and severity of drought based on monthly precipitation
and temperature data as well as the soil’s plant available water content (PAWC). In
this study, the mean PAWC value (0.18 cm3cm−3) across management systems
was obtained from15. The sc-PDSI, PHDI, and Z-index55,56 are variants of the
PDSI index with an improved analytical capacity to capture rapidly emerging
drought and moisture anomalies, long-term drought effect on water storage and
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streamflow, and extreme weather events in heterogeneous environments including
multiple micro-climatic sub-regions. Soil temperature measured continuously at
10 cm depth was also considered as a variable not associated with any specific
index. Finally, cotton growth stages are often defined as the number of days after
planting—but achieving proper growth at each milestone also strongly depends on
the number of days with optimum air temperature. Degree days (DD60’s) is a
measure of heat units that plants have accumulated before they undergo defoliation
and is often used as an indicator of plant maturity. Therefore, DD60’s was also
calculated as the cumulative average daily air temperature minus 15.6 °C (mini-
mum air temperature in which cotton growth occurs) over monthly periods.

Quantification of soil resilience. The multi-disciplinary nature of resilience in
ecosystem studies has led to a broad spectrum of definitions and assessment
metrics, but there is a lack of proper quantification of agroecosystem resilience,
particularity from the soil perspective. We used a suite of soil physical, chemical,
and biological properties commonly used for soil health assessment to foster
insight into the underlying mechanisms governing soil resilience and consequently
yield stability in extreme climatic conditions. The soil properties included SOC,
permanganate oxidizable carbon (POxC), dissolved organic carbon (DOC), WAS,
totally bound nitrogen (TNb), and microbial biomass (MB). During the growing
season of 2019, a composite soil sample including three random sub-samples was
collected from each plot (n= 128) at 0–10 cm soil depth. Sampling was conducted

by a hand auger except for the aggregate stability analysis, for which clods were
collected by hand and fractured gently into pieces to obtain the natural soil
aggregates. The SOC was measured by dry combustion method at 950 °C using a
CN analyzer (Elementar vario SOC cube in solid mode, Hanau, Germany). Fol-
lowing the method of57, POxC was measured by adding 20 mL of 0.02 M potassium
permanganate (KMnO4) to 2.5 g of soil sample. The solution was shaken at 120
rpm for 2 min and allowed to settle for 8 min. The supernatant was extracted and
diluted to 1/100. Finally, the absorbency rate of the dilute solution was measured at
550 nm by a microplate reader (Biotek Instruments, Inc., Vermont, USA). To
measure DOC, 10 g soil sample was mixed with 40 mL de-ionized water. The
solution was shaken for 30 min, then centrifuged at 3500 rpm for 20 min and
passed through a 0.45 µm membrane. The DOC concentration was measured by a
SOC analyzer following the method of58 (Shimadzu Instruments, Inc., North
America). The WAS was measured using a wet sieving apparatus (08.13, Eijkelk-
amp Agrisearch Equipment, Giesbeek, the Netherlands). Natural air-dried soil
aggregates sized between 1 and 2 mm were placed on 0.26 mm sieves and wetted
through capillary water motion from a wet cloth placed on the sieve bottom.
Samples were raised and lowered in distilled water for 3 min with a frequency of 35
times per min59. Thereafter, the unstable fraction was oven-dried and weighed and
stable fractions were corrected for the sand content using 2 g L−1 of sodium
hydroxide as a dispersant. The fraction of water-stable aggregates was calculated as

WAS ¼ on sieve� sandð Þ
total sample� sand
� � ´ 100 ð1Þ

Fig. 6 Indicator variable regression (IVR) shows the probability of yield losses below the 50th percentile of the global yield. Relationships are shown
across dry (D), relatively dry (RD), near-normal (NN), high-yielding near-normal (NNhy), relatively wet (RW), and wet (W) years vs. a soil organic carbon
(SOC g kg−1), bmicrobial biomass (MB µg g−1), c wet aggregate stability (WAS %), d total bound N (TNb mg kg−1), and e permanganate oxidizable carbon
(POxCmg kg−1).
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For MB, soil sampling was conducted in a relatively wet soil condition. Samples
were not sifted unless they displayed rootlets or debris, in which case these were
removed by sifting through a 3 mm soil sieve. Samples were analyzed in triplicate
and the average CV was less than 10%. The assay was by the microBIOMETER©

(Prolific Earth Sciences, Montgomery, NY, USA) kit protocol using kit reagents
and supplies. 0.5 mL of soil was packed into the microBIOMETER soil sampler and
added to the 10 mL of the high salt extraction solution which loosens the attach-
ment of the microbes to soil particles. Prior to whisking for 30 seconds, the clay
plug of soil was broken up by mechanically stabbing the base of the tube with a
stainless-steel spatula. Samples were allowed to settle for 20 min, during which time
the soil precipitates, and the fluid above the soil is colored with the microbes which
contain soil pigments. Six drops from the top 13 mm of the extract in the tube were
applied to the test card containing a membrane that traps the microbes on the
surface while allowing the fluid to wick away. The intensity of the color on the
membrane correlates with MB. MB was estimated using the microBIOMETER app
on a cell phone. Briefly, the phone takes a picture, and the MB is estimated from
the intensity of the color of the test card. At the same time as the microBIOMETER
test was performed, each extraction (three samples) was analyzed by digital
microscopy by making three slides and taking ten pictures of each slide, and
analyzing by particle size. Every soil sample was thus analyzed by microscope and
test card a total of nine times. The microscopic data showed an excellent corre-
lation with the test card data.

Statistical analyses
Yield stability under extreme climate conditions. The yield data for the first 5 years
(1984–1988) of the experiment was removed to only consider the more stable
condition of management systems following establishment. So, we considered yield
data from 1989 to 2018 for n= 371251. The only exception was 1993, for which
yield information is not available (Supplementary Data 1). To assess seasonal and
sub-seasonal drought influences on linearly de-trended cotton yield, all drought
indices, and soil- and plant-specific drought indicators were calculated at a
monthly time scale and also accumulated over the growing season (May 1 to
September 30) to obtain the “drought severity”60. The resulting 53 variables were
subjected to principal component analysis to reduce multicollinearity. Due to the
non-linear relationships between yield and the drought indicators/indices, we used
multivariate adaptive regression splines (MARS) models61 to identify the most
relevant variables explaining yield fluctuations. The MARS model is a non-
parametric approach to capture the nonlinearity aspect of singular and interactive
features in multiple regression by assessing cut points (knots). We used the “earth”
function in R62 to apply a threefold generalized cross-validation procedure for
“forward” pruning of features to avoid overfitting. The variable selection procedure
was continued until the nature of non-linearity and an optimum number of knots
were identified. The model selected four variables to build a model with five “basis
functions” (including the intercept) up to the second degree of interactions (Fig.
S1). We then applied a hierarchical clustering with the “Ward” partitioning algo-
rithm to cluster the experimental years based on the drought variables selected by
the MARS procedure. The optimum number of clusters was determined using the
“elbow” method, which restrains the number of clusters as a function of the total
within-cluster sum of squares (WSS), such that adding more clusters does not
improve WSS. The resulting six clusters were marked as two clusters of near-
normal years, and one cluster each of RD, dry, relatively wet, and wet years. The
yield stability was assessed separately within each of these climate clusters. We
defined yield stability as the probability that yield of the management system i falls
below the specified level of λ (10, 50, or 90th percentile of the global mean yield) in
a given environment j . This probability was calculated using the equation

Pr yij ≤ λ
� �

¼
Z λ

�
1=σ ij

ffiffiffiffiffiffi
2π

p
exp � λ� μi

� �2� �
=2σ2ij

h i
dλ ð2Þ

where μi is the mean yield and σ ij is the variance of the ith system. The normality of
yield distribution for all management systems was satisfied based on the
Shapiro–Wilk test (W > 0.9).

Soil resilience control on yield stability across climate conditions. Using
indicator variable regression in SAS63, the effect of a suite of soil quality indicators
(Supplementary Data 2) on the probability of yield losses below the fiftieth per-
centile of global mean yield was determined under each climate condition. Indi-
cator variable regression combines analysis of variance and regression. In this
process (also known as dummy regression), a regression line for each treatment
level is modeled, allowing slopes and s to be compared. Here, the climate condi-
tions (e.g., dry and wet) were considered as categorical variables. A full model with
linear, quadratic, and all interactions with treatments was executed, giving

Pryij ≤ λ
� �

¼ μþ CLi þ β1 ´ SPjj þ β2 ´ SPjj ´CLi þ γ1 ´ SPij ´ SPij þ γ2 ´CLi

´ SPij ´ SPij þ ϵij ð3Þ
where the probability of yield losses was predicted at ith climate condition (CL) in
jth soil attribute (SP), μ is the common intercept, β and γ are slope parameters, and
ϵ is the error term. Using a stepwise procedure, non-significant terms (P < 0.05)

were dropped. To obtain the parameter estimates, significant terms in the final
models were reduced to only one term per component (e.g., intercept, and linear
and quadratic slope) and common intercept was removed using “point” option
embedded in the “DANDA.SAS” macro64.

Data availability
The datasets relevant to the current study are available at https://zenodo.org/record/
4959654#.YMkAv6hKhPY.

Code availability
The R code for statistical analyses including the coding for MARS procedure and
clustering analysis are included in the Supplementary Material of this article.
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