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Sustainable development substantially reduces the
risk of future drought impacts
Hossein Tabari 1,2,3✉ & Patrick Willems1

Drought is a major natural hazard that can cause cascading impacts on socioeconomic

sectors, and its risk is expected to increase under future climate change and socioeconomic

developments. However, a comprehensive cross-disciplinary drought risk outlook is currently

lacking to support integrative disaster risk reduction efforts. To address this gap, our analysis

examines drought exposure, vulnerability, and risk towards the end of this century under four

future pathways. The study identifies the Mediterranean, Amazon, southern Africa, and

Central America as the most impacted regions where extreme multivariate drought is pro-

jected to become two to four times more likely. Our analysis also shows that sustainable

development would reduce population exposure to drought by 70% compared to fossil-

fueled development. Furthermore, it halves the number of countries facing a fivefold increase

in drought risk. Our results underscore the critical need for a cross-disciplinary drought risk

outlook and emphasize the importance of considering exposure and vulnerability for risk

assessments.
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Drought is a major natural hazard worldwide, given its
prevalence over the past few decades in various regions,
such as Australia during 1997–2009, southwest China

during 2009–2010, eastern Africa during 2010–2012, and the
Middle East during 1998–2012. Drought has caused massive
damages, accounting for 34% of disaster-related deaths between
1970 and 20191. Its risk as a function of hazard, exposure, and
vulnerability is also expected to amplify under future climatic and
socioeconomic changes2–4. Recognizing the importance of
understanding drought and assessing proactive measures to
mitigate its disaster risk, the High-Level Meeting on National
Drought Policies (HMNDP) in March 2013 emphasized the
necessity of this task5. To achieve the Sustainable Development
Goals (SDGs) by 2030, reducing risk and strengthening society’s
drought resilience was also acknowledged as an important task6.

Drought is a complex hazard that encompasses a series of
interactive physical processes and can cause cascading impacts on
different socioeconomic sectors7,8. Drought risk assessment for
one sector, such as agriculture, cannot be generalized for another
sector that requires a different physical form of drought, such as
hydrological or meteorological. Each drought index considers
specific hydroclimate processes9, and a meteorological drought,
which refers to a precipitation deficit, does not necessarily pro-
pagate to an agricultural drought, which refers to a soil moisture
deficit, especially in regions with relatively high average
precipitation10. Furthermore, future global warming is expected
to cause a more widespread and intense drying signal for soil
moisture and runoff11,12, compared to highly uncertain pre-
cipitation responses in many regions and seasons13. The pro-
jected larger changes in soil moisture and runoff highlight the
importance of non-precipitation processes such as increased
evaporative demand in the atmosphere14,15 and vegetation water
use16 for agricultural and hydrological droughts. Failing to ade-
quately account for the needs of end-users in different sectors and
disregarding the low intersubstitutability of drought results from
one domain to another17 can lead to blind spots in risk mitigation
and adaptation planning. To avoid this happening, a multivariate
drought assessment is required through the analysis of multiple
hydroclimatic variables to represent broad responses of the entire
hydrological cycle to climatic and socioeconomic changes. While
several studies have been conducted using multivariate indices to
analyze future drought at small scales7,18,19, global studies have
mainly focused on historical periods20,21, and there is a lack of
global assessments of future multivariate drought risk that
account for hazard, exposure, and vulnerability.

Previous global drought risk assessments have quantified the
risk of only one type of drought at a time15,22. However, quan-
tifying univariate drought may not be reliable for comprehensive
regional integrated management of drought risk23,24. In the few
existing univariate global drought risk studies, exposure and/or
vulnerability were disregarded or assumed constant over
time4,25–30. A static assumption for exposure and/or vulnerability,
however, is a serious limitation in risk estimates, as the three
components of risk are subject to change over time through
geomorphologic, socioeconomic, and climate influences31–34. In
this context, future population growth in hazard-prone areas was
found to be an even more important factor than hazard ampli-
fication for the future risk increase of some extreme events35.

To address these shortcomings, we perform a future (late 21st
century) risk analysis of multivariate droughts which integrates
the drought information from precipitation (meteorological),
runoff (hydrological), and soil moisture (agricultural) using the
joint distribution function of the three variables (see Methods).
The drought risk is derived as the product of the occurrence
probability of drought (hazard), population exposure, and the
Human Development Index (HDI)36 as an indicator of

vulnerability. Since in vulnerable societies dire impacts are not
always resulted from the most extreme events37, the risk analysis
is conducted for three extremity levels of drought including
moderate, severe, and extreme. The changes in the multivariate
drought risk are projected towards the end of this century under
four Shared Socioeconomic Pathways (SSPs)38 and then decom-
posed into hazard, exposure, and vulnerability contributions to
assess the drivers of risk changes.

Results
The analysis of climate change impacts on annual (12-month)
droughts shows that the probability of drought occurrence is
increasing (probability ratio >1) in many parts of the world based
on the ensemble median (Fig. 1). However, there is considerable
uncertainty in the sign of projected changes in drought prob-
ability in many global regions. Regions such as South America,
Central America, Australia, the Mediterranean, southern Africa,
southeastern Asia, and North America are projected to experience
a rise in drought probability in the late 21st century relative to the
historical period (1971–2000). The increase in hazard probability
is robust, especially for high emission and socioeconomic sce-
narios, in all these regions except for Australia and parts of
southern Africa and southeastern Asia. In these regions, the
magnitude of the increase in drought probability is proportional
to the severity of droughts, with extreme droughts experiencing
the largest increase. Climate change impact is also expected to rise
with the increase in emissions and socioeconomic scenarios.

On the other hand, some regions are expected to experience a
decrease in the probability of droughts. A robust decrease is
mainly found in central Africa and most of southern Asia. The
analysis for 3-month droughts shows a similar spatial pattern and
magnitude of changes in drought probability, but with slightly
lower values (Supplementary Fig. 1). The results for a 12-month
scale are hereafter presented and discussed in the paper.

Regions such as the Mediterranean, Amazon, southern Africa,
and Central America (see Supplementary Fig. 2 for the defined
domain for these regions) are identified as hotspots with the
worst climate change impact on future droughts. For instance, the
Mediterranean is projected to experience an increase of 2.5, 3.3, 4,
and 4.4 times more frequent extreme droughts under the SSP1,
SSP2, SSP3, and SSP5 scenarios, respectively (Fig. 2). The increase
is smaller for less extreme drought events. For the SSP1, SSP2,
SSP3, and SSP5 scenarios, respectively, 1.9, 2.3, 2.9, and 3.1 times
more frequent severe droughts are expected to occur by the end
of this century for the Mediterranean region (Supplementary
Fig. 3) and 1.6, 1.7, 2.1, and 2.2 times more frequent moderate
droughts (Supplementary Fig. 4). Similarly, Central America and
Amazon are expected to experience a similar pattern to the
Mediterranean, but with smaller drought probability amplifica-
tion. The future extreme drought probability in Central America
shows 1.7-, 2.2-, 2.8-, and 3.1-fold increases for the respective
scenarios (Fig. 2). The drought probability is projected to become
between 1.5 (SSP1) and 2.5 (SSP5) times larger for severe
droughts and between 1.3 (SSP1) and 1.9 (SSP5) times larger for
moderate droughts (Supplementary Figs. 3, 4). In Amazon, the
occurrence probability of extreme droughts gets 1.6, 1.9, 2.6, and
2.7 times larger in the future for SSP1, SSP2, SSP3, and SSP5,
respectively (Fig. 2). The occurrence probability rises between 1.4-
fold (SSP1) and 2.1-fold (SSP5) for severe drought and between
1.3-fold (SSP1) and 1.7-fold (SSP5) for moderate drought in
Amazon (Supplementary Figs. 3, 4). Southern Africa is also
projected to see an increase of 1.6, 2, 2.2, and 2.4 times larger
probabilities of extreme droughts under SSP1, SSP2, SSP3, and
SSP5, respectively (Fig. 2). For the respective scenarios, 1.4-, 1.5-,
1.7-, and 1.8-fold increases for severe droughts and 1.3-, 1.4-, 1.5-,
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and 1.5-fold increases for moderate droughts are expected in
southern Africa (Supplementary Figs. 3, 4).

Projected changes in the occurrence probability of droughts,
along with changes in population density, influence the number
of people exposed to the hazard. For all extremity levels of
droughts (moderate, severe, and extreme), the highest population
exposure is found for the SSP3 scenario (Fig. 3 and Supplemen-
tary Figs. 5, 6), due to the highest projected population (Sup-
plementary Fig. 7) and a large increase in drought occurrence
probability (Fig. 1). The highest population exposure for SSP3 is
also seen for the hotspot regions. The global population exposure
to droughts under SSP3 is 70% higher than that under SSP1. The
population exposure also increases with drought extremity and
reaches ~130% of the present global population for extreme
droughts under SSP3. The GCM uncertainty is also shown in
Fig. 3 and Supplementary Figs. 5, 6, which increases with drought
extremity.

To take into account vulnerability for deriving future drought
risk, the Human Development Index (HDI) for historical and
future periods (Supplementary Fig. 8) was used as a proxy of
vulnerability and integrated with the country-level drought
hazard (Supplementary Figs. 9, 10) and population. Comparing
Fig. 4 and Supplementary Fig. 10 reveals the importance of
exposure and vulnerability in shaping the future perspective of
drought risk. The number of countries facing a fivefold risk

increase approximately doubles from SSP1 to SSP5; from 11–13
countries to 22–25 countries (Fig. 4 and see Supplementary
Fig. 11 for drought risk factors when hazard, exposure, and
vulnerability are not normalized). The highest increases in
drought risk are mostly projected for the Mediterranean coun-
tries, including Portugal, Spain, Greece, Macedonia, Jordan,
Israel, and Syria. Guatemala, Chile, Zambia, and Madagascar are
also projected to experience a very large increase in drought risk.

In order to understand the underlying factors contributing to
the substantial increases in drought risk, this study conducted a
decomposition analysis of risk, looking at the roles of hazard,
exposure, and vulnerability. The results showed that, for both
countries with increasing and decreasing risk, hazard was the
main driver of risk for all drought extremity levels and future
scenarios, except for a moderate decrease in risk under SSP3,
where exposure played a larger role (Fig. 5). Specifically, hazard
accounted for 37–78% of the change in risk, and this contribution
was generally greater for decreasing risk cases and for more
extreme droughts. The contribution of hazard is mostly larger for
decreasing risk cases compared to increasing ones and it rises
with drought extremity. On the other hand, the contribution of
exposure and vulnerability to future drought risk was generally
larger for countries experiencing an increased risk compared to
those with a decreasing risk. However, it’s important to note that
the vulnerability index used in this analysis was not specifically

Fig. 1 Drought probability ratio between the late 20th century and the late 21st century. The ratio of the occurrence probability of moderate (a, d, g, j),
severe (b, e, h, k), and extreme (c, f, i, l) droughts for a 12-month scale based on the CMIP6 multi-model median by the late 21st century (2070–2099)
under different scenarios to the historical baseline period (1971–2000). Stippling indicates areas where fewer than 72% of models (13 out of the 18 GCMs)
agree on the sign of the probability ratio. See Supplementary Fig. 1 for the drought probability ratio of a 3-month scale.
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developed for drought, and using a more drought-tailored vul-
nerability index may provide a more accurate estimation of the
vulnerability contribution to future drought risk. Overall, this
decomposition analysis provides insight into the complex inter-
play of different factors driving drought risk and highlights the
need for tailored approaches to address and mitigate the impacts
of drought in different regions.

Discussion
This study provided a multi-sectoral outlook of future drought
risk towards the end of this century under four SSP scenarios. The
multivariate droughts integrated the drought information from
precipitation, runoff, and soil moisture. The drought risk was
derived as a function of the occurrence probability of moderate,
severe, and extreme droughts, population exposure, and the
Human Development Index (HDI) as a proxy for vulnerability. In
addition, the drivers of drought risk were explored by decom-
posing the changes into the contributions of the three risk
components, including hazard, exposure, and vulnerability.

The results indicate that climate change is likely to increase the
probability of droughts in many parts of the world, particularly in
vulnerable regions such as South America, Central America,
Australia, the Mediterranean region, and southern Africa. The

Mediterranean, Amazon, southern Africa, and Central America
are the most impacted regions where extreme drought probability
is projected to become between 1.6 and 4.4 times larger,
depending on the SSP scenario. The large increase in drought
occurrence could substantially increase drought damage in vul-
nerable societies, especially in the regions where people are
dependent on farming for their livelihoods (poor people in rural
areas of developing countries39) and lack financial, technological,
and institutional resources to cope with the consequences of
droughts40.

We also find that more extreme drought events are associated
with a larger increase in the probability of drought. This trend is
consistent with other types of extreme events, such as extreme
temperatures, precipitation, and flooding, which have also been
shown to have a larger climate change signal for more extreme
events41–45. Our results further highlight that the impact of climate
change on drought probability is expected to increase with the SSP
scenario as expected46. Global warming at the end of this century
compared to the current climate based on the CMIP6 ensemble
mean ranges from 0.69 °C for SSP1 to 3.99 °C for SSP547. The
higher the warming, the larger the change in the climate, with
evaporation as one of the key variables influencing drought
expected to increase at a rate of 1.5–4% per degree of warming48.

Fig. 2 Distribution functions of extreme drought probability based on the CMIP6 multi-model median in the grid cells of hotspot regions for the
historical period (1971–2000) and the late 21st century (2070–2099) under different scenarios. The results are shown for the annual (12-month) scale
for the Mediterranean (a), Amazon (b), Southern Africa (c), and Central America (d). The median probability for the baseline period as the reference is
shown by the vertical dashed line. See Supplementary Figs. 3, 4 for the distribution functions of severe and moderate drought probabilities, respectively.
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Results suggest that population exposure to droughts is pro-
jected to be the highest under the SSP3 scenario due to a com-
bination of two factors: a high probability of drought occurrence
and a large projected population because of relatively low
investments in human capital. In contrast, the population expo-
sure to droughts is projected to be the lowest under the
SSP1 scenario, which is characterized by sustainable development
and strong investments in human capital. The estimated popu-
lation exposure under SSP1 is globally 70% lower than that under
SSP3, highlighting the importance of investments in human
capital and sustainable development for reducing drought
impacts. This indicates that the magnitude of population expo-
sure to droughts in the future will depend not only on the climate
change scenario but also on how socioeconomic factors such as
population growth and human capital investment evolve.

The results of this work indicate that some parts of the world
are expected to face unprecedented increases in drought risk,
whose magnitudes depend strongly on future emissions and
socioeconomic pathways. The analysis highlights the largest
drought risk changes for SSP5 when the number of countries
facing a fivefold risk intensification is twice as large as that for
SSP1; 22–25 countries versus 11–13 countries. A higher drought
risk as the forcing and warming increase across the SSPs
demonstrates the importance of mitigating GHG emissions and
controlling socioeconomic changes to reduce drought risk.

Exploring the driving forces of risk changes identifies hazard as
the main driver for all drought extremity levels and future sce-
narios. For the increasing risk cases, about 50% of the increasing
magnitude is attributed to the hazard and the remaining 50% is
attributed to exposure and vulnerability, with a higher con-
tribution from exposure. These findings underscore the sig-
nificance of adopting a comprehensive approach to drought risk
assessment that integrates all three elements of risk—hazard,
exposure, and vulnerability. This approach can help inform the

development of more effective strategies for mitigating the
impacts of drought and building resilience to its effects.

This study also underscores the significance of using a multi-
variate drought analysis approach that accounts for the collective
changes in relevant variables for drought analysis in each sector.
The use of a multivariate approach is particularly essential
because hydroclimatic variables that are relevant to one drought
type cannot be used as substitutes for each other17. For example,
precipitation and runoff (or soil moisture) in Europe are pro-
jected to change in opposite directions3,49, meaning that using a
single hydrological variable as a proxy for drought analysis in
different sectors can lead to erroneous conclusions. Therefore, it
is crucial to consider the unique characteristics and needs of
different sectors when taking a holistic approach to drought
analysis. The multivariate drought indicator developed here based
on copula functions can quantify the combined conditions of
drought drivers for drought analysis. The advantage of this
approach is that all drought drivers do not need to be in extreme
conditions to account for drought impacts. By taking a compre-
hensive and integrative approach to drought analysis, decision-
makers can have the necessary information to make informed
choices and mitigate the impacts of drought on society and the
environment.

The results of this study highlight the need for implementing
drought risk mitigation and preparedness measures to address
devastating direct and indirect effects that cascade through
communities and ecosystems50. These measures need to be
implemented at various scales, including the sectoral level and the
local community level, to adapt to the new normal conditions of
reduced water availability and more frequent droughts51. If such
measures are not taken, there is a risk of triggering environmental
migration and water conflicts52,53. At the local scale, community
resilience efforts can help build capacity and promote social
learning to cope with the negative impacts of drought54.

Fig. 3 Population exposure to extreme droughts during the late 21st century period. Population exposure to different probabilities of extreme drought
events at a 12-month scale occurring during the late 21st century period (2070–2099) under different scenarios by individual GCMs at the global scale (a)
and in the Mediterranean (b), Amazon (c), Southern Africa (d), and Central America (e). Circle and error bars represent the CMIP6 multi-model ensemble
median and standard deviation (GCM uncertainty), respectively. The exposed population is expressed as a percentage of the current global population. See
Supplementary Figs. 5, 6 for the population exposure to severe and moderate drought probabilities, respectively.
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Examples of such efforts include water and food conservation,
developing drought-resistant crops and livestock varieties, and
sustainable land and water management practices like water
reuse, water harvesting, recharge, afforestation, and efficient use
of water in agriculture (e.g., drip irrigation)55–57.

At the global scale, drought risk reduction initiatives aim to
provide science-based information to support advocacy efforts
and assess the potential efficacy of risk reduction solutions in
regions most at risk8. Effective drought risk mitigation requires
international coordination, particularly for countries that share
transboundary water systems such as rivers, lakes, and aquifers58.
Such cooperation is essential to avoid conflicts during periods of
drought59,60. Our research shows that transboundary water
resources are likely to become scarcer in many regions due to
climate change, making cooperation even more critical for
effective drought risk management. For example, the Orange-
Senqu River basin in southern Africa, which encompasses Leso-
tho, South Africa, Namibia, and Botswana, is an area where
transboundary water resources are expected to become increas-
ingly scarce under future climate change (Fig. 1). Therefore,
international cooperation is particularly crucial in this region to

ensure effective drought risk mitigation and reduce the risk of
conflict.

Our study has shown that aggregated drought risk will dis-
proportionately impact low- and lower-middle-income countries
(e.g., in southern Africa and Southern America), where limited
capital assets and human security make them particularly vul-
nerable. To address this, investing in disaster risk reduction for
greater resilience is essential. The Sendai Framework for Disaster
Risk Reduction, developed by the United Nations, outlines four
priorities for action to help stakeholders effectively manage dis-
aster risk61. These priorities include understanding disaster risk,
strengthening disaster risk governance, investing in disaster risk
reduction, and enhancing disaster preparedness to enable effec-
tive response and support recovery, rehabilitation, and recon-
struction efforts with the aim of “Building Back Better”.

In addition to the measures mentioned above, shifting from
hydropower and fossil fuels to wind and solar energy sources and
raising awareness on drought hazards, exposure, and vulnerability
are also crucial for effective drought risk mitigation62,63. Specific
examples of such measures include promoting solar-powered
irrigation systems and educating farmers on sustainable

Fig. 4 Drought risk factor between the late 20th century and the late 21st century. Risk factors of moderate (a, d, g, j), severe (b, e, h, k) and extreme
(c, f, i, l) droughts by the late 21st century (2070–2099) under different scenarios relative to the historical baseline period (1971–2000). Hazard (12-month
drought), exposure, and vulnerability are normalized for the risk calculation. See Supplementary Fig. 11 for the drought risk factor derived from non-
normalized hazard, exposure, and vulnerability.
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agricultural practices64,65. By implementing these measures at
various scales, we can better mitigate the impacts of drought and
promote greater resilience in vulnerable communities and
ecosystems.

Recommendations for future work. While this study represents
a notable advancement in understanding global-scale drought
risk, there is always room for improvement in methodological
frameworks. Here are some recommendations for future work on
improving the methodological frameworks of drought risk
studies:

Hazard: It’s important to consider the specific needs and
characteristics of different regions and sectors when developing
drought indicators. While precipitation, runoff, and soil moisture
as commonly-used hydrological variables for drought analysis
were employed in this study, they may not be sufficient for
capturing the unique aspects of water availability in certain
regions or sectors such as agriculture and nature/ecology. For
example, in regions where water supply is heavily reliant on
snowpack, reservoir storage, and/or hydraulic flow regulation, it
may be important to include variables such as snow water
equivalent, reservoir storage capacity, and hydraulic regulation
strategy in drought indicators. Similarly, in regions where the
withdrawal of surface and/or groundwater resources is important,
information on this withdrawal may be critical for understanding
the impact of drought on water availability.

Exposure and vulnerability: While the HDI is an indicator used
for assessing vulnerability to various hazards, it may not fully
capture the specific vulnerabilities to drought. Future studies may
benefit from incorporating additional proxy indicators relevant to
drought vulnerability. In addition, the HDI was developed at the
national level, but there can be substantial variation in
vulnerability to drought within a country, especially in large

countries. Developing the HDI at a smaller spatial scale, such as
at the regional or local level, can provide more detailed and
accurate information about the distribution of vulnerability to
drought. This can help policymakers and practitioners to target
interventions and resources to areas and communities that are
most at risk, and to tailor their strategies to the specific needs and
characteristics of different regions and populations. Furthermore,
while the analysis in this study considers exposure of the entire
population at each location, there may be differential vulner-
abilities across populations based on age, socioeconomic status,
and other factors.

Future studies could incorporate the above-mentioned recom-
mendations to provide a more nuanced understanding of future
drought risk. Despite these limitations, this study represents a
significant step forward in global drought risk management by
integrating future projections of population exposure, an
indicator of socioeconomic vulnerability, and a multivariate
drought indicator.

Methods
Data. To ensure comprehensive coverage of all three types of drought (meteor-
ological, agricultural, and hydrological), the study utilized data on precipitation flux
(both liquid and solid phases), total runoff (including drainage through the base of
the soil model), and total soil moisture content (water in all phases summed over
all soil layers). The data were obtained from 18 CMIP6 GCMs that provided
information on these variables for historical simulations from 1971–2014 and four
future tier 1 scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) for the period
2015–2099 (Supplementary Table 1). It should be noted that SSP1-2.6, SSP2-4.5,
and SSP5-8.5 are continuations of the previous RCP2.6, RCP4.5, and
RCP8.5 scenarios, while SSP3-7.0 represents a new scenario with high-level
emissions (Supplementary Note 166).

Hazard. The multivariate standardized drought index (MSDI) was developed for
each grid cell of the CMIP6 GCMs, based on the joint distribution of precipitation,
runoff, and soil moisture derived from copula functions. The MSDI is a trivariate
index for a specific time scale of the variables (e.g., 1 month and 3 months) and is

Fig. 5 Contribution of hazard, exposure, and vulnerability to the change in drought risk. The median contribution across countries with increasing and
decreasing risk of moderate (a), severe (b), and extreme (c) droughts is shown. Hazard was calculated for a 12-month scale.
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expressed as:

H x1; x2; x3
� � ¼ C F1 x1

� �
; F2 x2

� �
; F3 x3

� �� � ¼ C u1; u2; u3
� � ð1Þ

where H is a three-dimensional distribution function of random variables x1, x2,
and x3, C is a copula function, and u1, u2, and u3 are variables produced by
marginal distribution functions F1, F2, and F3, respectively67. The marginal dis-
tributions were computed using the empirical Gringorten plotting position68 to
avoid making assumptions about distribution forms across the globe. The best-fit
copula family was determined based on the Bayesian Information Criteria.

Because of the difficulty of constructing three-dimensional functions by
copulas69,70, we coupled two bivariate copulas to construct a three-dimensional
function as:

C u1; u2; u3
� � ¼ C2 C1ðu1; u2Þ; u3

� � ¼ p ð2Þ
where C1 is the first bivariate copula function corresponding to variables u1 and u2,
C2 is the second bivariate copula function corresponding to variables C1ðu1; u2Þ
and u3, and p is the joint probability. The C1 and C2 are the same type of copula
function.

The MSDI was then computed based on the joint probability p (Eq. 2) as:

MSDI ¼ φ�1ðpÞ ð3Þ
where φ is the standard normal distribution function10. The MSDI follows the
drought classifications of the Standardized Precipitation Index (SPI71)
(Supplementary Table 2).

The MSDI was calculated for an annual time scale (12 months), representing
the anomalies of accumulated values for the given month and 11 previous months.
The 12-month scale was found to be the best predictor for drought impacts across
different sectors and regions72. This is the time scale of the globally most extreme
drought events in the last decades73. However, to check the sensitivity of the results
to the time scale, the MSDI was also calculated for the 3-month scale. The
anomalies were calculated for the whole period 1971–2099 as the baseline to ensure
a more robust and reliable quantification of the standardized index74. Driving the
MSDI time series separately for historical and future periods to obtain climate
change signals may lead to unrealistic results because normal conditions in the past
will change under future climate change75.

After computing MSDI, drought events were identified as every time the MSDI
indicator falls below a given threshold. Similar to the widely accepted drought
classifications based on the SPI, three thresholds of −1, −1.5, and −2
corresponding to the upper limits of moderate, severe, and extreme droughts were
used in this study (Supplementary Table 2). The probability of occurrence of
drought for historical (1971–2000) and future (2070–2099) periods was defined as
the number of drought months over the total number of months in each period,
and this was calculated for moderate, severe, and extreme droughts. The
probability ratio was calculated as the ratio of the probability of occurrence of
drought in the future period over that in the historical period. In total, the
probability ratio at each pixel was determined for 216 combinations (18 GCMs × 4
SSPs × 3 drought extremity levels). The robustness of the probability ratio was
assessed based on the consistency of the sign of the probability ratio among the
CMIP6 ensemble members. A probability ratio is deemed robust when more than
72% of the models (13 out of the 18 GCMs) agree on its sign.

Exposure. To investigate the population exposure to drought, we utilized popu-
lation density data with 0.5° × 0.5° spatial resolution and annual temporal resolu-
tion for both the historical period (1971–2000) and the future period (2070–2099).
The gridded population dataset, developed as part of the ISIMIP project (https://
www.isimip.org/gettingstarted/input-data-bias-adjustment/details/62/), included
historical population density from the HYDE3.2 database76, and future population
data derived from national decadal population projections based on SSP1, SSP2,
SSP3, and SSP5, which were linearly interpolated to the annual scale31. We cal-
culated the median population density of historical and future periods at each grid
cell exposed to different probabilities of moderate, severe, and extreme drought at
the corresponding grid cell (Fig. 3 and Supplementary Figs. 5, 6). Finally, we
aggregated the gridded population density to the country level for risk analysis.

Vulnerability. We evaluated the vulnerability of different countries to drought
using the Human Development Index (HDI). The HDI is a composite indicator of
life expectancy, educational level, and income developed by the United Nations
Development Program (UNDP). Life expectancy serves as a proxy for health,
educational level corresponds to awareness and knowledge of hazard prevention,
and income reflects the mitigation ability of individuals and governments. A his-
torical vulnerability was assessed using HDI values for 2005, while projected HDI
values30 under SSP1, SSP2, SSP3, and SSP5 pathways for 2075 were used to esti-
mate future vulnerability. As HDI values and risk have an inverse relationship
(lower HDI values correspond to higher vulnerability), we used one minus HDI for
the risk analysis.

Risk and its drivers. The risk of drought was defined as a multiplicative combi-
nation of hazard, exposure, and vulnerability. As these determinants have different
units, they need to be normalized before the integration for risk analysis. Although

drought occurrence probability and HDI theoretically fall within the 0-1 range, the
obtained values cover a far smaller range (e.g., 0.03–0.57 for the probability of
extreme drought). In that case, normalizing only the population values will give a
higher weight to the population exposure in the attribution analysis. To avoid such
an error, drought occurrence probability and HDI were also normalized between
0.05 and 0.95, similar to the population exposure. The normalization range of
0.05–0.95 was chosen to prevent zero values for the risk components. The risk was
calculated as

Risk ¼ hazard ´ exposture ´ vulneribility ¼ MSDIðpÞ ´ POPmed ´ ð1�HDIÞ ð4Þ
where POPmed is the median population for both the historical (1971–2000) and
future (2070–2099) periods. The risk was determined for moderate, severe, and
extreme drought events, where MSDI(p) is the probability of MSDI-based
droughts. Similar to the probability ratio of the drought hazard occurrence, the risk
factor was calculated as the ratio of the drought risk in the future period over that
in the historical period to quantify the expected future changes in drought risk.

To assess the drivers of risk changes, we decomposed the risk change into
hazard, exposure, and vulnerability contributions using a sensitivity analysis. We
calculated the contribution of each component by first calculating the risk using the
other two components for both historical and future periods. Next, we calculated
the change in the two-component risk between the historical and future periods.
Finally, we determined the contribution as the absolute difference between the
percentage change magnitudes derived from the two- and three-component risks.
The percentage contribution for each component was computed as the ratio of the
contribution of each component over the summation of the contributions of all
three components.

Data availability
The CMIP6 soil moisture, runoff and precipitation data used in this study can be
accessed online through the Earth System Grid Federation (ESGF) system (https://esgf-
node.llnl.gov/search/cmip6/). The population data are available at the ISIMIP repository
(https://www.isimip.org/gettingstarted/input-data-bias-adjustment/).

Code availability
The MATLAB code for drought characterization is available on request.
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