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ABSTRACT
The soil organic matter (SOM) and soil total nitrogen (STN) is a significant concern in Qinghai–Tibet
Plateau, China. This study analysed the spatial distribution of SOM and STN and determined their
influencing factors to support the conservation of cultivated soil and development of sustainable
agricultural strategies in the Plateau. In total, 120 soil samples were collected from the 0–20-cm soil
layer in Huzhu County, Qinghai Province. Traditional statistical and geostatistical methods were
used to analyse the spatial distribution of SOM and STN; a geographical detector (GeoDetector)was
used to explore the factors influencing the spatial variation. The SOM and STN concentrations were
6.92–44.57 and 0.52–2.54 g/kg, respectively. The Cokriging interpolation map showed a similar
spatial distribution pattern for SOM and STN concentrations, which decreased from the northeast
to southwest directions in the study area. GeoDetector results revealed that the three primary
factors influencing the spatial variability of SOM and STN were soil type, annual accumulated
precipitation and elevation, with their explanatory power ranging between 38.4% and 59.5%. Two-
factor interactions enhanced the explanatory power of the spatial variability of SOM and STN. The
research results provide a reference for conservation tillage and precision agriculture.
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Introduction

Soil organic matter (SOM) and soil total nitrogen (STN) are
two important components of the terrestrial ecosystem
and play crucial roles in the global carbon and nitrogen
cycling (Knicker et al. 1993; Janzen et al. 1997). Soil
carbon storage is 3.3 and 4.5 times greater than that of
the atmosphere and biosphere, respectively (Lal 2004);
the carbon in the SOM of agricultural ecosystems com-
prises dominant terrestrial carbon stocks (Huang et al.
2007). In SOM, the average carbon-to-nitrogen ratio is
10:1 (Knicker et al. 1993) and supplies the majority of the
nitrogen necessary for plant growth (Knicker et al. 1993;
Bingham and Cotrufo 2016). In agricultural ecosystems,
SOM and STN indicate soil quality and fertility and are
closely associated with the overall soil productivity
(Janzen et al. 1997; Ladha et al. 2011). A reduction in the
SOMandSTN concentrations leads to a decrease in soil fer-
tility and nutrient supply (Falahatkar et al. 2014); this
reduction can further influence atmospheric CO2 concen-
tration as well as global climate change (Tan and Lal
2005). The SOM and STN of cultivated land can be

improved through rational use andmanagement in agroe-
cosystems, which could be a huge sink of future atmos-
pheric CO2 (Jobbágy and Jackson 2000). The role of soils
to mitigate climate change by the ‘4 per 1000’ concept
to increase global SOC stocks by 0.4% has been acknowl-
edged (Dheri and Nazir 2021). An accurate assessment of
SOM and STN spatial patterns and it’s influencing factors
is a contributor to the rational use andmanagement of cul-
tivated land (Shahriari et al. 2011; Du et al. 2021).

The Qinghai–Tibet Plateau, located at the world’s
highest elevation, is known as ‘the Third Pole of the
Earth’. The alpine environment of the Qinghai–Tibet
Plateau promotes the accumulation of organic carbon
during soil formation, and the soil carbon pool of the
ecosystem is huge and plays an important role in
climate change and global carbon cycle source-sink pro-
cesses (Wang et al. 2008; Zhao et al. 2012). However, the
unique geographical environment is also vulnerable to
human activities and climate change. In the context of
global warming, the temperature increase rate of the
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Qinghai–Tibet Plateau is about twice that of the world,
which directly affects soil carbon emission processes
(Wang et al. 2008; Zhao et al. 2012). In order to under-
stand the feedback effects of soil carbon and nitrogen
pools in this region on global climate change, it is
necessary to analyse the distribution characteristics of
the SOM and STN in the alpine ecosystem and their
influencing factors. Previous studies have mainly been
conducted in forests, alpine meadows and alpine grass-
land ecosystems; the results revealed that factors such as
grazing (Dai et al. 2021), vegetation degradation (Wu
et al. 2020) and climate (Zhao et al. 2018) can have
obvious effects on the spatial variability of SOM and
STN, which show that the main factors affecting SOM
and STN vary between ecosystems and it is necessary
to study different ecosystems.

Plateau agriculture developed under the unique
climate, soil and water environment of the Tibetan
Plateau, is a key part of the region’s stability and healthy
development (Chen et al. 2021). Although agriculture on
the Qinghai-Tibetan Plateau is extremely sensitive to
climate change, humans can regulate it by implementing
proactive management strategies (Chen et al. 2021). The
spatial distribution of SOM and STN is influenced by
both structural and random factors, where structural
factors refer to natural factors in the formation of the soil
(e.g. soil type, topography) and random factors are anthro-
pogenic factors such as land-use practices and cropping
systems (Janzen et al. 1997). Several studies conducted
in the agricultural ecosystems of other regions have
reported that the spatial variability of SOM and STN is
influenced by the climate (Li et al. 2019), topography
(Ayoubi et al. 2012; Karchegani et al. 2012), soil type
(Njeru et al. 2017; Tajik et al. 2020), fertilisation practices
(Ladha et al. 2011; Tang et al. 2020), cropping system
(Xie et al. 2021) and tillage method (Shahriari et al. 2011).
In the corn belt of Northeast China, SOM and STN have
been demonstrated to increase with average annual pre-
cipitation and decrease with temperature (Li et al. 2019).
In Heyang County, southern part of Loess Plateau, topo-
graphy and soil type are the primary factors influencing
the spatial variability of SOM and STN (Chen et al. 2016),
whereas in Rugao and Muyang counties, Southeast
China, the primary influencing factors are elevation and
soil type (Xie et al. 2021). This demonstrates that the
spatial variation of SOM and STN as well as their influen-
cing factors can vary across study scales and geographical
areas (She and Shao 2009; Xie et al. 2021). Thus, evidence
providing targeted information for agricultural manage-
ment and production in specific regions is both necessary
and meaningful (Chen et al. 2016).

Geostatistics, especially kriging, has been used exten-
sively as the analysis methodology for characterising soil

spatial variability (Cressie 1990; Azadmard et al. 2018).
Several studies have shown that collocating kriging
(Cokriging) can significantly improve the interpolation
accuracy when the auxiliary variables highly correlate
with the unknown variables (Song et al. 2014; Golden
et al. 2020). Soil nutrient concentrations are the result
of a combination of factors; therefore, Cokriging is
widely used in soil nutrient studies and is an effective
method for increasing the precision of predictions (Wu
et al. 2009; Song et al. 2014). The primary factors that
influence soil nutrients vary across regions because of
different environments and human activities. Owing to
its ability to detect linear and non-linear relationships,
as well as interactions based on spatially heterogeneous
patterns, geographical detector (GeoDetector) can help
explore the factors controlling the concentrations (Du
et al. 2021; Liang and Fang 2021). On the basis of the
spatial heterogeneity of geographic phenomena, the
core idea of GeoDetector is that if geographic factor A
is controlled by another geographic factor B, then B
will show a spatial distribution similar to that of A
(Wang et al. 2016; Wang and Xu 2017). GeoDetector
requires the dependent and independent variables to
be treated as spatially typed variables, but does not
require a linear or non-linear relationship between the
dependent and independent variables (Wang and Xu
2017; Du et al. 2021). GeoDetector quantifies the
influence of factors on variables, and it has been more
and more applied in the field of soil science (Du et al.
2021; Liang and Fang 2021).

In the present study, Huzhu County (CARPC 1984) –
an agricultural county located in the Northeastern
Qinghai-Tibet Plateau – was selected as the study area.
Huzhu County is a typical plateau agricultural region
with a long-cultivated history, the cultivated land in
Huzhu County covers an area of 773 km2, accounting
for 1/8 of the total cultivated land in Qinghai Province;
wheat, oilseed rape, potatoes and their rotations being
the dominant cropping patterns in study area, and the
latter two account for 1/4 of Qinghai’s production (The
People’s Government of Huzhu County 2021). According
to field surveys, the cultivated land in Huzhu County is
cultivated by hand tractors, a cultivation practice that
has been maintained for >15 years. Huzhu County is a
traditional rain-fed dry farming region with most of the
cultivated land is irrigated by natural rainfall, cropping
patterns and agricultural management practices are
representative of the Tibetan Plateau region (Xu et al.
2019). The present study aimed to (1) characterise the
spatial variation of SOM and STN using a combination
of classical statistics, geostatistics and geographic infor-
mation system as well as (2) exploring the factors
influencing the spatial variability of SOM and STN.
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Materials and methods

The study area

Huzhu County (36°29ʹ–37°10ʹ, 101°46ʹ–102°45ʹ) is located
in the northeast of Qinghai Province, China. It has a con-
tinental climate with an average annual temperature of
5.8°C and an average annual precipitation of 477.4 mm.
This county occupies an area of 3424 km2 and has an
elevation of 2086–4322 m, of which 733 km2 is occupied
by cultivated land with an elevation of <3000 m
(Figure 1). The Daban Mountains run southeast to north-
west through the middle of this county. Regarding topo-
graphy, Huzhu can be divided into two different natural
geographical regions based on the central mountainous
areas: the southern and northwestern valleys; several

rivers flow from the central high mountain area to both
sides. Owing to elevation and topographic changes,
major portions of cultivated land are located in moun-
tains with low elevation and river valley flats on the left
side of the Daban Mountains. A map of the distribution
of cultivated land resources was provided by the Agricul-
tural Technology Extension Centre of Huzhu County
(Figure 1).

Soil sampling and analysis

Soil samples (depth: 0–20 cm) were collected and stored
according to the Technical Specifications for Soil
Environmental Monitoring (HJ/T166-2004) (CMEP
2004). Sampling was performed after crop harvesting.

Figure 1. Location of the study area (a) in Hehuang valley and (b) Hehuang valley. (c) Distribution of soil sampling sites throughout
the various topographical features of Huzhu County.
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Study area were selected to best represent the culti-
vated area use while considering the terrain attributes
and soil type. In total, 120 soil samples were collected.
Each sample consisted of 5 soil sub-samples, which
were collected the five-point sampling method. All of
the sub-samples were collected at a depth of 20 cm,
and approximately 500 g of soil was thoroughly mixed
to represent as a typical sampling. In order to exclude
the effects of fertilisation, soil sampling was conducted
at least a week after the crop was harvested. The
sampling area details were recorded, including data on
geographical coordinates, altitude and soil type. The
soil samples were air-dried, passed through a 2-mm
sieve and sent to the Testing and Analysis Centre of
Qinghai Academy of Agriculture and Forestry Sciences
for laboratory analysis. Chemical analysis of the soil
was performed according to the following methods:
SOM and STN concentrations were determined using
the oil bath-K2Cr2O7 titration and semi-micro Kjeldahl
methods, respectively (CMEP 2004).

Data preparation

Relief information about surface topography, including
slope and aspect, was derived from DEM data of ASTER
(http://www.gscloud.cn). True north was used as the
reference direction, and the aspect was divided 0°–
360° in clockwise direction. According to the calculated
angle value, the aspect was divided into five cat-
egories: (1) flat ground (−1), (2) sunny slope (135°–
225°), (3) half-sunny slope (90°–135° and 225°–270°),
(4) half-shady slope (45°–95° and 270°–315°), (5)
shady slope (0°–45° and 315°–360°). On the basis of a
rural land survey (CARPC 1984), the cultivated land
slope was divided into five grades: <2°, 2°–6°, 6°–15°,
15–25°, >25°. Given the relatively large topographic
undulations and less cultivated land on steep slopes,
the grade categories of 15°–25° and >25° were com-
bined into one single grade such that the cultivated
land slope was divided into four grades in total. Soil
type data was acquired from the National Geographic
Resource Science Subcenter, National Earth System
Science Data Centre, National Science &Technology
Infrastructure of China (http://gre.geodata.cn), it was
geo-referenced and clipped to fit the study area. The
soil types of the cultivated land are mainly chernozem
– a soil with a deep homogenous humus layer and
calcium carbonate leaching sedimentary layer formed
under the temperate sub-humid meadow grassland,
castnoze – a soil with maroon humus layer and gray-
white calcium deposit formed under semi-arid grass-
land, and meadow soils – a soil with obvious accumu-
lation of humus and rust stained patches formed by

diving involved in the process of soil formation. The
classification of soil types is based on the Soil Classifi-
cation System of China, and the name refers to the
classification and code for Chinese soil (AQSIQ and
SAC 2009).

The survey revealed that farming practices were gen-
erally consistent across the study area, with crop rotation
being the main cropping system, but there were differ-
ences in the amount of cultivated land owned by each
household. Therefore, the population statistical data of
each township in Huzhu County was collected from
the 6th National Population Census to calculate the
per capita cultivated land area. The annual accumulated
precipitation (AAP) and annual cumulative temperature
data (AAT) of each township were collected from the
Meteorological Bureau of Huzhu City; then, their
spatial distribution was established using the Inverse
Distance Weighting Method, the two were empirically
classified into three categories based on topographic
variations. Figure 2 showed the spatial distribution of
the seven impact factors.

Statistical and geostatistical analyses

Descriptive statistics and correlation analysis
For SOM and STN, the maximum, minimum, mean,
standard deviation, kurtosis, skewness and coefficient
of variation (CV) values were calculated to characterise
the central trend and spread of the soil parameter
datasets. The one-sample Kolmogorov–Smirnov test
was used to determine whether the data followed a
normal distribution; a suitable transformation was
used for non-normally distributed data. Correlations
between SOM and STN and influencing factors were
also determined. All analyses were performed using
IBM SPSS Statistics 24.0.

Cokriging interpolation method
This geostatistical method is based on the theory of
regionalised variables and uses semi-variance functions
to characterise the spatial variability of regionalised vari-
ables (Goovaerts 1999). In geostatistics, semi-variance
function parameters (e.g. range, sill and nugget) are
used to represent the spatial variability and correlation
of regionalised variables on a certain scale; this function
also forms the basis for accurate kriging interpolation
(Cambardella et al. 1994). The nugget-to-sill ratio can
be a criterion for the degree of spatial dependence
(DSD) of a variable. DSD is considered strong if it is
<25%, moderate if 25%–75% and weak if >75% (Cambar-
della et al. 1994). The semi-variance function was
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Figure 2. Spatial distribution of the seven influential factors.
Note: Type 1, cinnamon soils; Type 2, chernozem soils; Type 3, castanozems; Type 4, sierozems; Type 5, litho soils; Type 6, meadow soils; Type 7, fluvo-aquic soil;
Type 8, cumulated irrigated soils; Type 9, dark felty soils; Type 10, frigid frozen soils; AAP, annual accumulated precipitation; AAT, annual accumulated
temperature.
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computed using the following formula:

g(h) =
∑N(h)

i=1

[z(xi)− z(xi +h)2]/2N(h) (1)

where Z(xi) is the value at location of xi, h is the lag and N
(h) is the number of data pairs separated based on h.
Cokriging used in the presence of close correlation
between the spatial distribution of specific soil proper-
ties and other properties in the same position (Song
et al. 2014). The cross-semivariogram is the primary com-
ponent of Cokriging and serves as an effective tool for
evaluating spatial structure and variability (Papritz and
Fluhler 1994; Wu et al. 2009). The formula used for
cross-semivariogram is as follows:

gij(h) =
∑N(h)

k=1

{[zi(xk + h)− zi(x)][zj(xk + h)− zj(x)]}/2N(h)

(2)

where γij(h) is the cross-semivariogram of random vari-
ables zi and zj, h is the separation distance and N(h) is
the number of discrete points between zi and zj with a
given lagged distance interval. The model fitted by the
cross-over semi-variance function was selected as the
best-fit model with a relatively higher coefficient of
determination and smaller residual sum of squares
(Wang 1999). The Cokriging method accounts for the
correlation among different regional variables; it devel-
ops the best valuation method for regionalised variables
from a single attribute to two or more coordinated
regional attributes, from which estimates can be made
to improve the accuracy and rationality of the estimation
(Odeh et al. 1995; Song et al. 2014). The following
formula is used for the Cokriging prediction model:

Z∗(x0) =
∑N

i=1

l1iZ1(xi)+
∑P

i=1

l2jZ2(xj) (3)

where Z*(x0) is the position of the sample point; λ1i and
λ2j are the weight coefficients assigned to the measured
values of the primary and auxiliary variables Z1 and Z2,
respectively, and N and P are the numbers of measured
values of the primary and auxiliary variables Z1 and Z2,
respectively, involved in the valuation of point x0. In
this study, cross-semivariogram function models
between SOM and STN with the auxiliary variables
were estimated, and the best-fit model was selected
according to the evaluation criteria for the parameters
of the semi-variance function theoretical model. Cokri-
ging interpolation was used to predict the SOM and
STN concentrations in the study area. The semi-vario-
gram was developed using GS+ version 9.0. ArcGIS

10.6 was used to create the Cokriging interpolation
map of variables.

Cross-validation is a common method to validate
kriging predictions (Myers 1997). To perform cross-vali-
dation, one sample from the dataset was removed and
the remaining samples were used for predictions in
each iteration; this process was repeated until each
sample had been individually removed. The cross-vali-
dation indices include mean error (ME), root mean
square error (RMSE), mean standard error (MSE), root
mean square standardised error (RMSSE) and average
standard error (ASE) (Cressie 1990). Moreover, 80% of
the training samples were selected as the training set
and 20% as the test set by random sampling. This
study used the test datasets, which contained 24
reserved sample points, to evaluate the performance
of the Cokriging interpolation method. Specifically,
the Cokriging interpolation results were assigned to
the 24 test sample points to obtain simulation
values. A comparative analysis was then performed
between the simulation values and the values
measured from the 24 test points. ME, RMSE and R2

between simulated and measured values were calcu-
lated to evaluate the interpolation accuracy (Chai and
Draxler 2014).

Geographical detector

The GeoDetector is a spatial heterogeneity detection
model (Wang et al. 2016, 2017) used to quantify the
driving force of each factor on the dependent variable.
The GeoDetector software was downloaded from the
website (http://www.geodetector.cn), including the
four modules for factor, risk, ecological and interaction
detectors. The factor detector can detect whether the
independent variable X has an influence on variable Y
(e.g. SOM) and can partially explain the spatial differen-
tiation mechanism of variable Y. The factor detector was
selected to analyse the driving mechanisms of soil
spatial variability, which were assessed using the q-stat-
istic value. The formula for the q-statistic value is shown
below.

q = 1−
∑L

h=1 Nh s
2
h

Ns2 q [ [0, 1] (4)

where q is the explanatory power index of the factors
that influence soil spatial variability, wherein the large
the value, the greater the explanatory power. When
the strata are defined by factor X, q indicates that
factor X can explain 100× q% of the spatial pattern. L
represents the number of strata. N is the total sample
size; Nh is the total number of samples in stratum h; σ
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and σ2 represent the total variance and variance of
samples in stratum h, respectively.

The interaction detector can identify interactions
between different influencing factors. X1∩X2 is a new
stratum created using a combination of individual
factors (X1 and X2); their unique and combination q-stat-
istics are denoted as q(X1) and q(X2) and q(X1∩X2),
respectively. Table 1 shows the form of the interaction
of two factors according to their relationships. SigmaPlot
10.0 was used to plot the results.

Results

Descriptive statistics for SOM and STN

Table 2 outlines the descriptive statistics of SOM and
STN. Concentrations of SOM and STN ranged from 6.92
to 44.57 g/kg and 0.52 to 2.54 g/kg with means of
23.41 and 1.53 g/kg, respectively. The variable coeffi-
cient of SOM and STN were 35% and 36%, respectively,
and were between 25% and 75%; thus, the data had
moderate variation (Nielsen and Bouma 1985). An analy-
sis of the probability distribution of the raw SOM data
indicated that the distribution exhibited clear deviations;
therefore, square root transformation was used to fit a
normal distribution. The transformed SOM and raw
STN data passed the Kolmogorov–Smirnov test (p
< .05), meeting the requirement of geostatistical
analysis.

Geostatistical analysis results

Identification and treatment of auxiliary variables
Table 3 shows the Spearman correlation coefficients for
topography and climate factors correlated with SOM and
STN. The correlation between SOM and STN was 0.964.
SOM and STN were significantly associated with
elevation, AAP and AAT. Elevation showed a significant
positive correlation with AAP and a significant negative
correlation with AAT. In order to avoid covariance

problems caused by strong correlations among
elevation, AAP and AAT, principal component analysis
was used to extract the main components as auxiliary
information. (Jolliffe and Cadima 2016), the first principal
component (Factor1) that explained 81% of the total
variance was extracted. Factor 1 was then used as an
auxiliary variable for the Cokriging interpolation. As a
type variable, analysis of variance was used to determine
whether the soil type was an auxiliary variable of interp-
olation. There were significant differences in the concen-
trations of SOM and STN across soil types (F = 8.764 and
F = 9.755, respectively); therefore, soil type was ident-
ified as an auxiliary variable. Soil type as a categorical
variable required further treatment to be used in the
Cokriging interpolation as an auxiliary variable. There-
fore, ArcGIS 10.6 was used to overlay the township
boundary and soil type maps and calculate the mean
values for SOM and STN for the sampling points of the
same soil type within the same township; 240 × 240-m
mean raster data were generated for SOM and STN
based on different soil type and townships (For simpli-
city of description, these two mean raster data are
referred to as STsom and STstn, respectively), replacing
the soil type with these two mean raster data as an
auxiliary variable for interpolation.

Semivariogram function analysis for SOM and STN
The semivariogram and spatial variability of SOM and
STN were calculated and compared. The semivariogram
of soil properties exhibits a good structure, which can be
fitted with a Gaussian model (Figure 3). Table 4 presents
the Gaussian model parameters for SOM and STN. The
SOM variation range of 60,240 m is greater than the
STN variation range of 59,830 m, with the two showing
correlation over a relatively large range. The DSD
values of 16.66% and 16.78% for SOM and STN, respect-
ively, exhibited strong spatial autocorrelation, indicating
that their spatial variability is mainly influenced by struc-
tural factors.

Cokriging interpolation results of SOM and STN
Based on the above correlation analysis results and the
optimal semivariogram function model, the STN, factor
1, and STstn were used as auxiliary data to perform Cokri-
ging interpolation on SOM, and the STN was performed
using SOM, factor 1, and STsom as auxiliary data. Figure 3
is the Cokriging interpolation map of SOM and STN, and

Table 1. Interactions between explanatory variables.
Description Interaction

q(X1∩X2)<Min(q(X1), q(X2)) Weakened, non-linear
Min(q(X1), q(X2))<q(X1∩X2) <Max(q(X1), q(X2)) Weakened, uni-
q(X1∩X2)>Max(q(X1), q(X2)) Enhanced, bi-
q(X1∩X2)=q(X1)+q(X2) Independent
q(X1∩X2)>q(X1)+q(X2) Enhanced, non-linear

Table 2. Descriptive statistics for SOM and STN.
Variable Min (g/kg) Max (g/kg) Mean (g/kg) SD CV (%) Skew Kurt K–S Sig.

SOM 6.92 44.57 23.41 8.25 35 0.46 −0.51 0.005(0.2)S

STN 0.52 2.54 1.53 0.46 30 0.34 −0.30 0.2N
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Tables 5 and 6 are the evaluation tables of interpolation
accuracy. The cross-validation and the evaluation results
between the measured value and the simulated value
show that the interpolation result is good (Tables 5
and 6), which can be used to analyse the spatial distri-
bution characteristics of SOM and STN. SOM and STN dis-
played similar spatial distribution patterns; there was a
significant positive correlation (R = .964, P < .01)
between the two. Cokriging interpolation map showed
a range of 11.79–43.16 and 0.91–2.49 g/kg for SOM
and STN concentrations, respectively. A pattern of
decreasing SOM and STN concentrations from the north-
east to southwest directions in the study area, whereby
the higher SOM and STN concentrations were primarily
distributed in the northern high-elevation region.
According to the national soil nutrient grading standards
(NSSO 1998), SOM concentrations in Huzhu County is

divided into four grades, accounting for 27.6%, 48.3%,
23.8% and 0.2% of the total cultivated area respectively;
the STN concentrations is also divided into four grades,
accounting for 0.8%, 38.3%, 42.3% and 18.5% of the
total cultivated area respectively (Table 7). The soil nutri-
ent classes were distributed in a graded manner, in
general, the nutrient status of STN was better than SOM.

Spatial variation analysis of SOM and STN based
on geodetector

Results of factor detector
The above analysis shows that SOM and STN were
mainly influenced by structural factors in study area.
Therefore, structural factors such as climate, topography
and soil type were selected as influencing factors for
detection. It was also found during the field survey
that the area of cultivated land per capita varied con-
siderably from township to township, implying

Table 3. Correlation coefficients for SOM, STN and influential factors (*significant at p < 0.05, **significant at p < 0.01).
Variable STN Elevation Slope Aspect AAT AAP

SOM 0.964** 0.427** −0.076 0.022 −0.598** 0.592**
STN 0.443** −0.068 0.032 −0.587** 0.558**
Elevation 0.152* 0.035 −0.740** 0.647**
Slope 0.084 −0.118 0.166*
Aspect −0.098 0.013
AAT −0.710**
SOM: soil organic matter; STN: soil total nitrogen STN; AAT: annual accumulated temperature; AAP: annual accumulated precipitation.

Figure 3. Semi-variograms of SOM and STN.

Table 4. Semi-variogram parameters and spatial structures for SOM and STN concentrations.
Variable Model Range (m) C0 C0+C DSD (%) R2 RSS

SOM Gaussian 60,240 0.35 2.08 16.66 0.97 3.59×10−2

STN Gaussian 59,830 0.10 0.59 16.78 0.96 3.50×10−3

Note: G: Gaussian model; C0: nugget; C0+C: sill; DSD: degree of spatial dependence (C0/[C0 + C]).

Table 5. Cross-validation of SOM and STN with cokriging
interpolation results.
Variable ME RMSE MSE RMSSE ASE

SOM 0.00008 0.643 0.00106 1.049 0.6148
STN 0.0011 0.35 0.00454 1.016 0.3471

ME: mean error; RMSE: root mean square error; MSE: mean standard error;
RMSSE: root mean square standardised error; ASE: average standard error.

Table 6. Verification between SOM and STN test sets and
cokriging interpolation results.
Variable ME RMSE R2

SOM 2.607 3.489 0.70
STN 0.150 0.204 0.68
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different labour inputs in the management of cultivated
land, so the area of cultivated land per capita in the
township was probed as a random influence factor.
Due to software computing power limitations, the
SOM, STN and impact factor layers were cropped and
converted to a 240*240m raster data, the values of the
raster were extracted for calculation.

The factor detector evaluated the explanatory power
of seven factors for SOM and STN (Table 8). Soil type,
AAP, AAT and elevation were the dominant factors that
influenced the spatial variation of SOM and STN. The
order of influence (highest to lowest) was as follows:
soil type, AAP, AAT and elevation. Other than elevation,
which had a slightly greater explanatory power for the
spatial variation of STN than SOM, all other factors had
similar explanatory power. Changes in the topographical
parameters – slope and aspect – had less impact on the
spatial variability of the SOM and STN.

Results of interaction detector
Figure 4 shows the explanatory power of two-factor
interactions. The q values of two-factor interaction

were higher than those of any individual factor, with
the observed effects in the form of binary or non-linear
enhancements. The combinations with the greatest
explanatory power for spatial variation in SOM and
STN were the interaction of soil type with AAP (q
= .676) and the interaction of soil type with elevation
(q = .692), while being the second most explanatory for
each other. The third and fourth combinations were
the same in explaining the spatial variation of SOM
and STN, i.e. the combination of AAP and elevation,
and that of per capita cultivated land of townships and
soil types. The results of the interaction detector illus-
trate the complexity of factor interactions and contrib-
ute to a more accurate understanding of the spatial
variability of SOM and STN.

Discussion

SOM and STN spatial pattern characteristics

The study area was a typical agricultural area in the
Qinghai–Tibet Plateau region, and the soil nutrients of
the cultivated land represent the situation after long-
term cultivation. Correlation analysis revealed that SOM
and STN increased as AAP increased and AAT decreased.
Elevation correlated positively with AAP and negatively
with AAT. These results demonstrated that the interaction
between climate and elevation can be a dominant factor
affecting the spatial distribution of SOM and STN. The
geostaistical analysis results showed that SOM and STN
had low nugget effects, indicating strong long-range

Table 7. The statistical results of SOM and TN concentrations for different categories.
SOM STN

Class Range (g/kg) Areas (km2) Percentage (%) Class Range (g/kg) Areas (km2) Percentage (%)

I <40 213.8 27.7 I <2 6.5 0.8
II 40–30 373.3 48.3 II 2–1.5 295.9 38.3
III 30–20 184.3 23.8 III 1.5–1.0 327.3 42.3
IV 20–10 1.6 0.2 IV 1–0.75 143.3 18.5

Table 8. Factor detector results.
Variation A B C D E F G

SOM 0.384 0.011 0.015 0.196 0.578 0.286 0.523
STN 0.464 0.012 0.013 0.195 0.595 0.276 0.504

Note: A: elevation; B: elope; C: aspect; D: per cultivated area; E: soil type; F:
annual accumulated temperature (AAT); G: annual accumulated precipi-
tation (AAP).

Figure 4. Spatial distribution of SOM and STN.
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spatial variability. Geostatistical parameters can reflect the
spatial dependence of environmental variables (Cambar-
della et al. 1994). The low nugget effect and relatively
strong long-range indicate that the spatial distribution
of SOM and STN was primarily influenced by structural
factors (Zhu et al. 2018).

From the interpolation results, the distribution
pattern of SOM and STN content is more consistent
with the trend of elevation change in the study area,
gradually decreasing from northeast to southwest.
Similar distribution patterns were found in studies in
the Taita Mountains of the East African Plateau, where
SOM and STN were significantly and positively corre-
lated with elevation change and elevation was an impor-
tant driver of SOM and STN in mountain ecosystems
(Njeru et al. 2017). The high SOM value converges to
the SOM concentrations range of 26.0–55.0 g/kg in the
eastern Canadian oilseed rape production area (Ma
et al. 2015), but compared to the SOM and STN
content of 17.8–20.0 and 1.47–1.87 g/kg, respectively,
in cultivated land at a similar altitude in the Mexican
Plateau study, SOM and STN at relatively low altitude
in the study area still have room for improvement and
reasonable agricultural management practices are still
necessary (Pajares et al. 2009).

Factors influencing the SOM and STN spatial
variability

GeoDetector has the potential to measure the consist-
ency of the spatial distribution of two variables (Wang
and Xu 2017). The Factor detector results show that
the explanatory power of each factor was similar to
SOM and STN, likely as a result of the close coupling
between SOM and STN in agricultural system. Soil type
and climate conditions are the main driving factors for

the spatial variation of SOM and STN on a regional
scale (Jobbágy and Jackson 2000; Li et al. 2019).
Different soil types have different physicochemical prop-
erties, which can have a great impact on aeration per-
meability and fertility retention (Deng et al. 2018), and
lead to differences in the ability to store and supply
nutrients, this inevitably affects SOM and STN concen-
trations. In the study area, the main cultivated land soil
types were chernozem, castanozem, meadow soils and
sierozem, and the distribution of soil type matches, to
a certain extent, with gradient change of elevation. Cher-
nozem soil has a high carbon sequestration capacity
compared to castanozem soil (Semenov et al. 2008). In
this study, when the cultivated soil type is chernozem,
the soil nutrient level is mainly level 2, and when the
soil type is castanozem soil, the soil nutrient level is
mainly level 3 or 4. Figure 2(f,g) demonstrate that the
AAP and AAT of the study area show opposite ten-
dencies. In arid areas, water is a limiting factor for crop
growth, such that sub-regions with low AAP produce
less organic matter (Xin et al. 2016; Du et al. 2021). In
contrast, high temperatures promote soil microbial
activity and accelerate the depletion of SOM and STN;
thus, cool and wet environments are more conducive
to the accumulation of soil nutrients (Wang et al.
2017). Topographical factors guide the soil biological
and chemical processes and hydrothermal conditions,
which closely correlate with the accumulation and
decomposition of SOM and STN. In this study, change
in the elevation of the cultivated land was higher; with
an increase in the elevation, AAP increases gradually
and soil moisture conditions improve but AAT decreases,
contributing to the accumulation of SOM and STN (Zhu
et al. 2018; Kang et al. 2020). Slope and aspect had a
small effect on the spatial variability of SOM and STN,
which was expected considering the size of the area

Figure 5. Interaction detector results.
Note: (A) elevation; (B) slope; (C) aspect; (D) per cultivated area of township; (E) soil type; F: annual accumulated temperature; (G) annual accumulated
precipitation.
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analysed, variability of climate and high heterogeneity of
the soil type. (see Figure 5)

Environmental factors interact with each other to
affect the spatial variability of SOM and STN (Wang
and Xu 2017; Du et al. 2021). Interaction detector
results show that factor interactions enhance the expla-
natory power of the spatial variation of SOM and STN.
The interaction of soil type and other factors has a
strong explanatory power for the spatial changes of
SOM and STN. When soil characteristics are used as
auxiliary factors to predict SOC, the accuracy of the pre-
diction results is improved, which proves the influence
of soil characteristics on the spatial variability of SOC
(Tajik et al. 2020). The per capita cultivated land of town-
ships ranked fifth in terms of explanatory power as
assessed by the factor detector, whereas the interaction
q-statistic significantly increased based on the soil type,
this may be associated with the fact that soil type shows
a certain overlap with the distribution of per capita cul-
tivated land of townships (Figure 2(d,e)). Farming activi-
ties destroy the structure of soil aggregates, take away
crop residues, and cause changes in SOM (Ajami et al.
2016). The area of cultivated land per capita partly
reflect the intensity of farming, and different farming
intensities also cause changes in SOM (Li et al. 2019).
Regional climate is affected by topographical changes,
and topographical attributes affect the decomposition
and accumulation of SOM by controlling temperature
and moisture (Ajami et al. 2016; Zeraatpisheh et al.
2019). The study area is located on a plateau with
great altitude variation, and temperature and rainfall
vary significantly with elevation. The dryer and warmer
conditions in low altitude areas limit the net primary
productivity and carbon input in the soil (Njeru et al.
2017). However, the influence of human activities on cul-
tivated land should not be ignored because agricultural
management is an important source of soil nutrients (Li
et al. 2019). The geographical orientation of man-made
farming management is obvious: the flat terrain in the
river valley is convenient for both management and
transportation; therefore, the land is used more inten-
sively. Intense agricultural cultivation accelerates soil
erosion and organic matter decomposition, causing
the cultivated land to have lower SOM concentrations
than its potential capacity (Laganière et al. 2010).

Conclusion

We estimated the spatial distribution of SOM and STN in
cultivated land in Huzhu County, Qinghai Province. A
significant positive correlation was observed between
SOM and STN, with similar spatial distribution patterns.
SOM and STN concentrations gradually decreased from

the northeast to southwest directions of the study
area, and fertile cultivated land was mainly distributed
in areas with high elevation. The explanatory power of
influencing factors was quantified using GeoDetector,
wherein soil type, AAP and elevation had strong expla-
natory power for the spatial variation of SOM and STN,
as did two-factor combinations.

Stringent measures should be taken to protect the
fertility of cultivated land during agricultural manage-
ment; the fact that global warming may pose a chal-
lenge to the conservation of SOM and STN in this
region should also be considered. Conservation tillage
and agricultural water engineering facilities should be
constructed to improve irrigation in the river valley
areas and increase soil nutrient levels. GeoDetector is a
powerful tool for exploring the spatial consistency of
independent and dependent variables. In this study,
this tool explored the factors that influence the spatial
variation of SOM and STN while also quantifying their
explanatory powers to provide theoretical evidence for
the development of strategies for soil nutrient
management.
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