Carbon Stocks

Permanent URI for this collection

Carbon stocks are not the same as carbon credits; rather, the term refers to the volume of carbon stored in biomass and marine sediments.

Browse

Recent Submissions

Now showing 1 - 12 of 12
  • Item
    Vegetated coastal ecosystems in the Southwestern Atlantic Ocean are an unexploited opportunity for climate change mitigation
    (Springer Nature, 2023-05-08) Hatje, Vanessa; Copertino, Margareth; Patire, Vinicius F.; Ovando, Ximena; Ogbuka, Josiah; Johnson, Beverly J.; Kennedy, Hilary; Masque, Pere; Creed, Joel C.
    Vegetated coastal ecosystems (mangroves, seagrasses, and saltmarshes, often called Blue Carbon ecosystems) store large carbon stocks. However, their regional carbon inventories, sequestration rates, and potential as natural climate change mitigation strategies are poorly constrained. Here, we systematically review organic carbon storage and accumulation rates in vegetated coastal ecosystems across the Central and Southwestern Atlantic, extending from Guyana (08.28°N) to Argentina (55.14°S). We estimate that 0.4 Pg organic carbon is stored in the region, which is approximately 2-5% of global carbon stores in coastal vegetated systems, and that they accumulate 0.5 to 3.9 Tg carbon annually. By ecosystem type, mangroves have the largest areal extent and contribute 70-80% of annual organic carbon accumulation, with Brazil hosting roughly 95% of mangrove stocks. Our findings suggest that organic carbon accumulation in the region is equivalent to 0.7 to 13% of global rates in vegetated coastal ecosystems, indicating the importance of conserving these ecosystems as a nature-based approach for mitigating and adapting to climate change.
  • Item
    Above-ground tree carbon storage in response to nitrogen deposition in the U.S. is heterogeneous and may have weakened
    (Springer Nature, 2023-02-14) Clark, Christopher M.; Thomas, R. Quinn; Horn, Kevin J.
    Changes in nitrogen (N) availability affect the ability for forest ecosystems to store carbon (C). Here we extend an analysis of the growth and survival of 94 tree species and 1.2 million trees, to estimate the incremental effects of N deposition on changes in aboveground C (dC/dN) across the contiguous U.S. (CONUS). We find that although the average effect of N deposition on aboveground C is positive for the CONUS (dC/dN = +9 kg C per kg N), there is wide variation among species and regions. Furthermore, in the Northeastern U.S. where we may compare responses from 2000-2016 with those from the 1980s–90s, we find the recent estimate of dC/dN is weaker than from the 1980s–90s due to species-level changes in responses to N deposition. This suggests that the U.S. forest C-sink varies widely across forests and may be weakening overall, possibly necessitating more aggressive climate policies than originally thought.
  • Item
    Carbon accumulation rates are highest at young and expanding salt marsh edges
    (Springer Nature, 2022-08-02) Miller, Carson B.; Rodriguez, Antonio B.; Bost, Molly C.; McKee, Brent A.; McTigue, Nathan D.
    An objective of salt marsh conservation, restoration, and creation is to reduce global carbon dioxide levels and offset emissions. This strategy hinges on measurements of salt marsh carbon accumulation rates, which vary widely creating uncertainty in monetizing carbon credits. Here, we show the 14–323 g C m−2 yr−1 range of carbon accumulation rates, derived from cores collected at seven sites in North Carolina U.S.A., results from the landward or basinward trajectory of salt marsh colonization and the intertidal space available for accretion. Rates increase with accelerating sea-level rise and are highest at young and expanding marsh edges. The highest carbon densities are near the upland, highlighting the importance of this area for building a rich stock of carbon that would be prevented by upland development. Explaining variability in carbon accumulation rates clarifies appraisal of salt marsh restoration projects and landscape conversion, in terms of mitigating green-house gas emissions.
  • Item
    The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management
    (Springer Nature, 2022-01-18) Sha, Zongyao; Bai, Yongfei; Li, Ruren; Lan, Hai; Zhang, Xueliang; Li, Jonathon; Liu, Xuefeng; Chang, Shujuan; Xie, Yichun
    Excessive emissions of greenhouse gases — of which carbon dioxide is the most significant component, are regarded as the primary reason for increased concentration of atmospheric carbon dioxide and global warming. Terrestrial vegetation sequesters 112–169 PgC (1PgC = 1015g carbon) each year, which plays a vital role in global carbon recycling. Vegetation carbon sequestration varies under different land management practices. Here we propose an integrated method to assess how much more carbon can be sequestered by vegetation if optimal land management practices get implemented. The proposed method combines remotely sensed time-series of net primary productivity datasets, segmented landscape-vegetation-soil zones, and distance-constrained zonal analysis. We find that the global land vegetation can sequester an extra of 13.74 PgC per year if location-specific optimal land management practices are taken and half of the extra clusters in ~15% of vegetated areas. The finding suggests optimizing land management is a promising way to mitigate climate changes.
  • Item
    Warming temperatures lead to reduced summer carbon sequestration in the U.S. Corn Belt
    (Springer Nature, 2021-03-05) Yu, Zhongjie; Griffis, Timothy J.; Baker, John M.
    The response of highly productive croplands at northern mid-latitudes to climate change is a primary source of uncertainty in the global carbon cycle, and a concern for future food production. We present a decadal time series (2007 to 2019) of hourly CO2 concentration measured at a very tall tower in the United States Corn Belt. Analyses of this record, with other long-term data in the region, reveal that warming has had a positive impact on net CO2 uptake during the early crop growth stage, but has reduced net CO2 uptake in both croplands and natural ecosystems during the peak growing season. Future increase in summer temperature is projected to reduce annual CO2 sequestration in the Corn Belt by 10–20%. These findings highlight the dynamic control of warming on cropland CO2 exchange and crop yields and challenge the paradigm that warming will continue to favor CO2 sequestration in northern mid-latitude ecosystems.
  • Item
    Rice paddy soils are a quantitatively important carbon store according to a global synthesis
    (Springer Nature, 2021-08-06) Liu, Yalong; Ge, Tida; van Groenigen, Kees Jan; Yang, Yuanhe; Wang, Ping; Cheng, Kun; Zhu, Zhenke; Wang, Jingkuan; Guggenberger, Georg; Sardans, Jordi; Penuelas, Josep; Wu, Jinshui; Kuzyakov, Yakov
    Rice paddies account for ~9% or the world’s cropland area and are characterized by environmental conditions promoting soil organic carbon storage, methane emissions and to a lesser extent nitrous oxide emissions. Here, we synthesize data from 612 sites across 51 countries to estimate global carbon stocks in paddy soils and determine the main factors affecting paddy soil carbon storage. Paddy soils (0–100 cm) contain 18 Pg carbon worldwide. Paddy soil carbon stocks decrease with increasing mean annual temperature and soil pH, whereas mean annual precipitation and clay content had minor impacts. Meta-analysis shows that paddy soil carbon stocks can be increased through several management practices. However, greenhouse gas mitigation through paddy soil carbon storage is generally outweighed by increases in methane and nitrous oxide emissions. Our results emphasize the key role of paddies in the global carbon cycle, and the importance of paddy management in minimizing anthropogenic greenhouse gas emissions.
  • Item
    Vegetation and microbes interact to preserve carbon in many wooded peatlands
    (Springer Nature, 2021-03-26) Wang, Hongjun; Tian, Jianqing; Chen, Huai; Ho, Mengchi; Vilgalys, Rytas; Bu, Zhao-Jun; Liu, Xingzhong; Richardson, Curtis J.
    Peatlands have persisted as massive carbon sinks over millennia, even during past periods of climate change. The commonly accepted theory of abiotic controls (mainly anoxia and low temperature) over carbon decomposition cannot fully explain how vast low-latitude shrub/tree dominated (wooded) peatlands consistently accrete peat under warm and seasonally unsaturated conditions. Here we show, by comparing the composition and ecological traits of microbes between Sphagnum- and shrub-dominated peatlands, that slow-growing microbes decisively dominate the studied shrub-dominated peatlands, concomitant with plant-induced increases in highly recalcitrant carbon and phenolics. The slow-growing microbes metabolize organic matter thirty times slower than the fast-growing microbes that dominate our Sphagnum-dominated site. We suggest that the high-phenolic shrub/tree induced shifts in microbial composition may compensate for positive effects of temperature and/or drought on metabolism over time in peatlands. This biotic self-sustaining process that modulates abiotic controls on carbon cycling may improve projections of long-term, climate-carbon feedbacks in peatlands.
  • Item
    Effects of forest degradation classification on the uncertainty of aboveground carbon estimates in the Amazon
    (Springer Nature, 2023-02-14) Rangel Pinagé, Ekena ; Keller, Michael; Peck, Christopher P.; Longo, Marcos; Duffy, Paul; Csillik, Ovidiu
    Background Tropical forests are critical for the global carbon budget, yet they have been threatened by deforestation and forest degradation by fire, selective logging, and fragmentation. Existing uncertainties on land cover classification and in biomass estimates hinder accurate attribution of carbon emissions to specific forest classes. In this study, we used textural metrics derived from PlanetScope images to implement a probabilistic classification framework to identify intact, logged and burned forests in three Amazonian sites. We also estimated biomass for these forest classes using airborne lidar and compared biomass uncertainties using the lidar-derived estimates only to biomass uncertainties considering the forest degradation classification as well. Results Our classification approach reached overall accuracy of 0.86, with accuracy at individual sites varying from 0.69 to 0.93. Logged forests showed variable biomass changes, while burned forests showed an average carbon loss of 35%. We found that including uncertainty in forest degradation classification significantly increased uncertainty and decreased estimates of mean carbon density in two of the three test sites. Conclusions Our findings indicate that the attribution of biomass changes to forest degradation classes needs to account for the uncertainty in forest degradation classification. By combining very high-resolution images with lidar data, we could attribute carbon stock changes to specific pathways of forest degradation. This approach also allows quantifying uncertainties of carbon emissions associated with forest degradation through logging and fire. Both the attribution and uncertainty quantification provide critical information for national greenhouse gas inventories.
  • Item
    A life cycle and product type based estimator for quantifying the carbon stored in wood products
    (Springer Nature, 2023-01-23) Wei, Xinyuan; Zhao, Jianheng; Hayes, Daniel J.; Daigneault, Adam; Zhu, He
    Background Timber harvesting and industrial wood processing laterally transfer the carbon stored in forest sectors to wood products creating a wood products carbon pool. The carbon stored in wood products is allocated to end-use wood products (e.g., paper, furniture), landfill, and charcoal. Wood products can store substantial amounts of carbon and contribute to the mitigation of greenhouse effects. Therefore, accurate accounts for the size of wood products carbon pools for different regions are essential to estimating the land-atmosphere carbon exchange by using the bottom-up approach of carbon stock change. Results To quantify the carbon stored in wood products, we developed a state-of-the-art estimator (Wood Products Carbon Storage Estimator, WPsCS Estimator) that includes the wood products disposal, recycling, and waste wood decomposition processes. The wood products carbon pool in this estimator has three subpools: (1) end-use wood products, (2) landfill, and (3) charcoal carbon. In addition, it has a user-friendly interface, which can be used to easily parameterize and calibrate an estimation. To evaluate its performance, we applied this estimator to account for the carbon stored in wood products made from the timber harvested in Maine, USA, and the carbon storage of wood products consumed in the United States. Conclusion The WPsCS Estimator can efficiently and easily quantify the carbon stored in harvested wood products for a given region over a specific period, which was demonstrated with two illustrative examples. In addition, WPsCS Estimator has a user-friendly interface, and all parameters can be easily modified.
  • Item
    Mineral-enriched biochar delivers enhanced nutrient recovery and carbon dioxide removal
    (Springer Nature, 2022-03-18) Buss, Wolfram; Wurzer, Christian; Manning, David A. C.; Rohling, Eelco J.; Borevitz, Justin; Mašek, Ondřej
    Biochar production via biomass pyrolysis with subsequent burial in soils provides a carbon dioxide removal technology that is ready for implementation, yet uptake requires acceleration; notably, through generation of cost reductions and co-benefits. Here we find that biomass enrichment (doping) with refined minerals, mineral by-products, or ground rocks reduces carbon loss during pyrolysis, lowering carbon dioxide removal costs by 17% to US$ 80–150 t−1 CO2, with 30% savings feasible at higher biomass costs. As a co-benefit, all three additives increase plant-available nutrient levels. Doping with potassium-bearing minerals can increase both potassium and phosphorus release. Mineral doping in biochar production therefore offers carbon dioxide removal at lower costs, while alleviating global phosphorus and potassium shortages. This makes it unique among carbon dioxide removal technologies.
  • Item
    Hydroclimatic vulnerability of peat carbon in the central Congo Basin
    (Springer Nature, 2022-11-02) Garcin, Yannick; Schefuß, Enno; Dargie, Greta C.; Hawthorne, Donna; Lawson, Ian T.; Sebag, David; Biddulph, George E.; Crezee, Bart; Bocko, Yannick E.; Ifo, Suspense A.; Wenina, Y. Emmanuel Mampouya; Mbemba, Mackline; Ewango, Borneille E. N.; Emba, Ovide; Bola, Pierre; Tabi, Joseph Kanyama; Tyrrell, Genevieve; Young, Dylan M.; Gassier, Ghislain; Girkin, Nicholas T.; Vane, Christopher H.; Adatte, Thierry; Baird, Andy J.; Boom, Arnoud; Gulliver, Pauline; Morris, Paul J.; Page, Susan E.; Sjögersten, Sofie; Lewis, Simon
    The forested swamps of the central Congo Basin store approximately 30 billion metric tonnes of carbon in peat. Little is known about the vulnerability of these carbon stocks. Here we investigate this vulnerability using peat cores from a large interfluvial basin in the Republic of the Congo and palaeoenvironmental methods. We find that peat accumulation began at least at 17,500 calibrated years before present (cal. yr BP; taken as AD 1950). Our data show that the peat that accumulated between around 7,500 to around 2,000 cal. yr BP is much more decomposed compared with older and younger peat. Hydrogen isotopes of plant waxes indicate a drying trend, starting at approximately 5,000 cal. yr BP and culminating at approximately 2,000 cal. yr BP, coeval with a decline in dominant swamp forest taxa. The data imply that the drying climate probably resulted in a regional drop in the water table, which triggered peat decomposition, including the loss of peat carbon accumulated prior to the onset of the drier conditions. After approximately 2,000 cal. yr BP, our data show that the drying trend ceased, hydrologic conditions stabilized and peat accumulation resumed. This reversible accumulation–loss–accumulation pattern is consistent with other peat cores across the region, indicating that the carbon stocks of the central Congo peatlands may lie close to a climatically driven drought threshold. Further research should quantify the combination of peatland threshold behaviour and droughts driven by anthropogenic carbon emissions that may trigger this positive carbon cycle feedback in the Earth system.
  • Item
    Sub-continental-scale carbon stocks of individual trees in African drylands
    (Springer Nature, 2023-03-01) Tucker, Compton; Brandt, Martin; Hiernaux, Pierre; Kariyaa, Ankit; Rasmussen, Kjeld; Small, Jennifer; Igel, Christian; Reiner, Florian; Melocik, Katherine; Meyer, Jesse; Sinno, Scott; Romero, Eric; Glennie, Erin; Fitts, Yasmin; Morin, August; Pinzon, Jorge; McClain, Devin; Morin, Paul; Porter, Claire; Loeffler, Shane; Kergoat, Laurent; Issoufou, Bil-Assaour; Savadogo, Patrice; Wigneron, Jean-Pierre; Poulter, Benjamin; Cliais, Phillippe; Kaufmann, Robert; Myneni, Ranga; Saatchi, Sassan; Fensholt, Rasmus
    The distribution of dryland trees and their density, cover, size, mass and carbon content are not well known at sub-continental to continental scales. This information is important for ecological protection, carbon accounting, climate mitigation and restoration efforts of dryland ecosystems. We assessed more than 9.9 billion trees derived from more than 300,000 satellite images, covering semi-arid sub-Saharan Africa north of the Equator. We attributed wood, foliage and root carbon to every tree in the 0–1,000 mm year−1 rainfall zone by coupling field data, machine learning, satellite data and high-performance computing. Average carbon stocks of individual trees ranged from 0.54 Mg C ha−1 and 63 kg C tree−1 in the arid zone to 3.7 Mg C ha−1 and 98 kg tree−1 in the sub-humid zone. Overall, we estimated the total carbon for our study area to be 0.84 (±19.8%) Pg C. Comparisons with 14 previous TRENDY numerical simulation studies for our area found that the density and carbon stocks of scattered trees have been underestimated by three models and overestimated by 11 models, respectively. This benchmarking can help understand the carbon cycle and address concerns about land degradation. We make available a linked database of wood mass, foliage mass, root mass and carbon stock of each tree for scientists, policymakers, dryland-restoration practitioners and farmers, who can use it to estimate farmland tree carbon stocks from tablets or laptops.