Silica and Biochar Amendments Improve Cucumber Growth under Saline Conditions

Abstract

Rapidly increasing salinization of arable land is a major threat to crop production globally, and the soil of regions with arid environments, such as Oman, are more prone to this menace. In this work, two complementary studies were carried out to evaluate the effect of soil amendments on soil physicochemical properties and growth of cucumber seedlings. In the first study, high- and low-saline soils were used with or without perlite. The amendments tested included mango wood biochar, silica, and biochar + silica, while no amendment was taken as the control. The second study included two cucumber cultivars and irrigation water with two salinity treatments, along with the same four soil amendments. The results showed that soil amendment with biochar alone or with silica enhanced the soil organic matter and NO3, P, and K concentration, while silica amendment substantially enhanced the soil Si level in both studies. Saline soil and irrigation water inhibited seedling emergence and plant growth in both experiments. However, the addition of biochar and silica alone or in combination increased the cucumber seedling dry weight from 39.5 to 77.3% under salt stress compared to the control. Likewise, silica and biochar + silica reduced the sap Na accumulation by 29–31.1% under high salinity. Application of biochar under high salinity resulted in 87.2% increase in sap K. Soil amendments with biochar and silica or their combination have the potential to reduce the adverse effect of salt stress on cucumber.

Description

Acknowledgments: The authors would like to thank Sultan Qaboos University for in-kind support for use of the laboratory, growth chamber, and other facilities, which made this work possible. © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). The Version of Scholarly Record of this Article is published in Soil Systems, 2023, available online at: https://www.mdpi.com/2571-8789/7/1/26 . Keywords: salinization; biomass production; nutrient; irrigation water salinity; mango wood biochar.

Keywords

Citation

Al-Toobi, M.; Janke, R.R.; Khan, M.M.; Ahmed, M.; Al-Busaidi, W.M.; Rehman, A. Silica and Biochar Amendments Improve Cucumber Growth under Saline Conditions. Soil Syst. 2023, 7, 26. https://doi.org/ 10.3390/soilsystems7010026

DOI

Collections